Improved Parameterized Upper Bounds for Vertex Cover

  • Jianer Chen
  • Iyad A. Kanj
  • Ge Xia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


This paper presents an O(1.2738 k + kn)-time polynomial-space parameterized algorithm for Vertex Cover improving the previous O(1.286 k + kn)-time polynomial-space upper bound by Chen, Kanj, and Jia. The algorithm also improves the O(1.2745 k k 4 + kn)-time exponential-space upper bound for the problem by Chandran and Grandoni.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balasubramanian, R., Fellows, M., Raman, V.: An improved fixed parameter algorithm for Vertex Cover. Information Processing Letters 65, 163–168 (1998)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the Weighted Vertex Cover problem. Annals of Discrete Mathematics 25, 27–46 (1985)MathSciNetGoogle Scholar
  3. 3.
    Buss, J., Goldsmith, J.: Nondeterminism within P. SIAM Journal on Computing 22, 560–572 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. Journal of Computer and System Sciences 67(4), 789–807 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Sunil Chandran, L., Grandoni, F.: Refined memorisation for vertex cover. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 61–70. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.: Solving large FPT problems on coarse grained parallel machines. Journal of Computer and System Sciences 67(4), 691–706 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, J., Kanj, I., Jia, W.: Vertex cover: further observations and further improvements. Journal of Algorithms 41, 280–301 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, J., Liu, L., Jia, W.: Improvement on Vertex Cover for low degree graphs. Networks 35, 253–259 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chlebik, M., Chlebikova, J.: Crown reductions for the minimum weighted vertex cover problem. Electronic Colloquium on Computational Complexity, Report No. 101 (2004)Google Scholar
  10. 10.
    Downey, R., Fellows, M.: Fixed-parameter tractability and completeness. Congressus Numerantium 87, 161–187 (1992)MathSciNetGoogle Scholar
  11. 11.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)Google Scholar
  12. 12.
    Ebengger, C., Hammer, P., de Werra, D.: Pseudo-boolean functions and stability of graphs. Annals of Discrete Mathematics 19, 83–98 (1984)Google Scholar
  13. 13.
    Fellows, M.R.: Blow-ups, win/Win’s, and crown rules: Some new directions in FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  15. 15.
    Impagliazzo, R., Paturi, R.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63, 512–530 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nemhauser, G., Trotter, L.: Vertex packing: structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Niedermeier, R., Rossmanith, P.: Upper bounds for Vertex Cover further improved. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 561–570. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover. Journal of Algorithms 47, 63–77 (2003)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Robson, J.M.: Algorithms for maximum independent set. Journal of Algorithms 6, 425–440 (1977)MathSciNetGoogle Scholar
  20. 20.
    Stege, U., Fellows, M.: An improved fixed-parameter-tractable algorithm for Vertex Cover. Technical Report 318, Department of Computer Science, ETH Zürich (April 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jianer Chen
    • 1
  • Iyad A. Kanj
    • 2
  • Ge Xia
    • 3
  1. 1.Department of Computer ScienceTexas A&M UniversityCollege StationUSA
  2. 2.School of Computer Science, Telecommunications and Information SystemsDePaul UniversityChicagoUSA
  3. 3.Department of Computer ScienceLafayette CollegeEastonUSA

Personalised recommendations