Advertisement

Parametrization Construction of Integer Wavelet Transforms for Embedded Image Coding

  • Zaide Liu
  • Nanning Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4153)

Abstract

The Integer Wavelet Transform (IWT) has proved particularly successful in the area of embedded lossy-to-lossless image coding. One of the possible methods to realize the IWT is the lifting scheme. Here we construct a new class of IWTs parameterized simply by one free parameter, which are obtained by introducing a free variable to the lifting based factorization of a Deslauriers-Dubuc interpolating filter. The exact one-parameter expressions for this class of IWTs are deduced and different IWT can be easily obtained by adjusting the free parameter. In particular, several IWTs with binary coefficients are constructed. Extensive experiments show, as compared with some state-of-the-art IWTs, that our transforms have more superior compression performance for both lossless and lossy image coding, and yet require only comparable computational complexity. Besides, a quantization method suitable for IWT is also discussed in this paper.

Keywords

Integer Wavelet Transform (IWT) Lossy-to-lossless image coding Lifting scheme Compression performance Computational complexity Quantization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo, B.L.: Wavelet transforms that map integers to integers. Appl. Comput. Harmon. Anal. 5, 332–369 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Said, A., Pearlman, W.A.: An image multiresolution representation for lossless and lossy compression. IEEE Trans. Image Proc. 5, 1303–1310 (1996)CrossRefGoogle Scholar
  3. 3.
    Reichel, J., Menegaz, G., Nadenau, M.J., Kunt, M.: Integer wavelet transform for embedded lossy to lossless image compression. IEEE Trans. Image Proc. 10, 383–392 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Adams, M.D., Kossentini, F.: Reversible integer-to-integer wavelet transforms for image compression: Performance evaluation and analysis. IEEE Trans. Image Proc. 9, 1010–1024 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bilgin, A., Sementilli, P.J., Sheng, F., Marcellin, M.W.: Scalable image coding using reversible integer wavelet transforms. IEEE Trans. Image Proc. 9, 1972–1977 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Adams, M.D., Ward, R.K.: Symmetric-extension-compatible reversible integer-to-integer wavelet transforms. IEEE Trans. Signal Proc. 51, 2624–2636 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    ISO/IEC 15444-1 (2nd edition), Information technology—JPEG 2000 image coding system: core coding system (2004)Google Scholar
  8. 8.
    Said, A., Pearlman, W.A.: A new, fast, efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Tech. 6, 243–250 (1996)CrossRefGoogle Scholar
  9. 9.
    Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3, 186–200 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 245–267 (1998)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constructive Approx. 5, 49–68 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Woods, J.W., Naveen, T.: A filter based bit allocation scheme for subband compression of HDTV. IEEE Trans. Image Proc. 1, 436–440 (1992)CrossRefGoogle Scholar
  13. 13.
    Katto, J., Yasuda, Y.: Performance evaluation of subband coding and optimization. In: Proc. of the SPIE Symposium on Visual Commu. and Image Proc., vol. 1605, pp. 95–106 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zaide Liu
    • 1
  • Nanning Zheng
    • 1
  1. 1.Institute of Artificial Intelligence & RoboticsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations