A Statistical Level Set Framework for Segmentation of Left Ventricle

  • Gang Yu
  • Changguo Wang
  • Peng Li
  • Yalin Miao
  • Zhengzhong Bian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4153)


A novel statistical framework for segmentation of the echocardiographic images is presented. The framework begins with presegmentation at a low resolution image and passes the result to the high resolution image for a fast optimal segmentation. We applied Rayleigh distribution to analyze the echocardiographic image, and introduced a posterior probability-based level set model. The model is applied for the pre-segmentation. The pre-segmentation result at the low resolution is used to initialize the front for the high resolution image with a fast scheme. At the high resolution, an efficient statistical active contour model is used to make the curve smoother and drives it closer to the real boundary. Segmentation results show that the statistical framework can extract the boundary accurately and automatically.


Segmentation Result Active Contour Active Contour Model Rayleigh Distribution Echocardiographic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sechian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, New York (1999)Google Scholar
  2. 2.
    Xiao, G., Brady, M., Noble, J., Zhang, Y.: Segmentation of Ultrasound B-mode Images with Intensity in Homogeneity Correction. IEEE Transactions on Medical Imaging 21(1), 48–57 (2002)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Thinuvenkadam, S.: On the Incorporation of Shape Priors into Geometric Active Contours. In: IEEE Workshop on Variational and Level set Methods in Computer Vision, pp. 45–152 (2001)Google Scholar
  4. 4.
    Caselles, V., Kimmel, R., Spairo, G.: Geodesic Active Contours. International Journal of Computer Vision 22, 61–79 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Yezzi, A., Andy Jr., T., Alan, W.: A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations. Journal of Visual Communication and Image Representation 13, 195–216 (2002)CrossRefGoogle Scholar
  6. 6.
    Chan, T.F.: Active Contours without Edges. IEEE Transaction On Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Nikos, P., Olivier, M.G., Visvanathan, R.: Gradient Vector Flow Fast Geometric Active Contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3), 402–407 (2004)CrossRefGoogle Scholar
  8. 8.
    Pascal, M., Philippe, R., Francois, G., Prederic, G.: Influence of the Noise Model on Level Set Active Contour Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6), 799–803 (2004)CrossRefGoogle Scholar
  9. 9.
    Nikos, P.: A Level Set Approach for Shape-driven Segmentation and Tracking of the Left Ventricle. IEEE Transactions on medical imaging 22(6), 773–776 (2003)CrossRefGoogle Scholar
  10. 10.
    Zhao, Z., Aylward, S.R., Teoh, E.-K.: A novel 3D partitioned active shape model for segmentation of brain MR images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 221–228. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Acton, S.T., Bovik, A.C., Crawford, M.M.: Anisotropic diffusion pyramids for image segmentation. In: IEEE Conference on Image Processing, pp. 478–482 (1994)Google Scholar
  12. 12.
    Perona, P., Malik, J.: Scale-space and Edge Detection using Anisotropic Diffusion. IEEE Transaction On Pattern Anal. and Mach. Intell. 12(6), 629–639 (1990)CrossRefGoogle Scholar
  13. 13.
    Alessandro, S., Cristiana, C., Elena, M., Claudio, L.: Maximum Likelihood Segmentation of Ultrasound Images with Rayleigh Distribution. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 52(6), 947–960 (2005)CrossRefGoogle Scholar
  14. 14.
    Navalgund, R., Sumat, M., Zhu, H.: Ultrasound speckle statistics variations with imaging systems impulse response. In: IEEE Ultrasonics Symposium, vol. 3, pp. 1435–1440 (1990)Google Scholar
  15. 15.
    Ning, L., Weichuan, Y., James, S.D.: Combinative Multi-scale Level Set Framework for Echocardiographic Image Segmentation. Medical Image Analysis 7, 529–537 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gang Yu
    • 1
  • Changguo Wang
    • 2
  • Peng Li
    • 1
  • Yalin Miao
    • 1
  • Zhengzhong Bian
    • 1
  1. 1.School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anChina
  2. 2.Nantong Vocational CollegeNantongChina

Personalised recommendations