Adaptive Sparse Vector Tracking Via Online Bayesian Learning

  • Yun Lei
  • Xiaoqing Ding
  • Shengjin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4153)


In order to construct a flexible representation for robust and efficient tracking, a novel real-time tracking method based on online learning is proposed in this paper. Under Bayesian framework, RVM is used to learn the log-likelihood ratio of the statistics of the interested object region to those of the nearby backgrounds. Then, the online selected sparse vectors by RVM are integrated to construct an adaptive representation of the tracked object. Meanwhile, the trained RVM classifier is embedded into particle filtering for tracking. To avoid distraction by the particles in background region, the extreme outlier model is incorporated to describe the posterior probability distribution of all particles. Subsequently, mean-shift clustering and EM algorithm are combined to estimate the posterior state of the tracked object. Experimental results over real-world sequences have shown that the proposed method can efficiently and effectively handle drastic illumination variation, partial occlusion and rapid changes in viewpoint, pose and scale.


Object Representation Scale Invariant Feature Transform Visual Tracker Interested Object Relevance Vector Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jepson, A., Fleet, D., EI-Maraghi, T.: Robust Online Appearance Models for Visual Tracking. PAMI 10, 1296–1311 (2003)Google Scholar
  2. 2.
    Skocaj, D., Leonardis, A.: Weighted and robust incremental method for subspace learning. In: Proceedings of ICCV (2003)Google Scholar
  3. 3.
    Ross, D., Lim, J., Yang, M.-H.: Adaptive probabilistic visual tracking with incremental subspace update. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 470–482. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Ho, J., Lee, K.-C., Yang, M.-H., Kriegman, D.: Visual Tracking Using Learned Linear Subspace. In: Proceedings of CVPR (2004)Google Scholar
  5. 5.
    Matthews, I., Ishikawa, T., Baker, S.: The Template Update Problem. PAMI 6, 810–815 (2004)Google Scholar
  6. 6.
    Han, B., Davis, L.: On-Line Density-Based Appearance Modeling for Object Tracking. In: Proceedings of ICCV (2005)Google Scholar
  7. 7.
    Collins, R.T., Liu, Y.: On-line Selection of Discriminative Tracking Features. In: Proceedings of ICCV (2003)Google Scholar
  8. 8.
    Nguyen, H.T., Smeulders, A.W.M.: Tracking aspects of the foreground against the background. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 446–456. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Wang, J., Gao, W., Chen, X.: Online Selecting Discriminative Tracking Features using Particle Filter. In: Proceedings of CVPR (2005)Google Scholar
  10. 10.
    Avidan, S.: Ensemble Tracking. In: Proceedings of CVPR (2005)Google Scholar
  11. 11.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. PAMI 5, 564–577 (2003)Google Scholar
  12. 12.
    Collins, R.T., Liu, Y., Leordeanu, M.: Online Selection of Discriminative Tracking Features. PAMI 10, 1631–1643 (2005)Google Scholar
  13. 13.
    Tipping, M.E.: Sparse Bayesian Learning and the Relevance Vector Machine. JMLR 1, 211–244 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Williams, O., Blake, A., Cipolla, R.: Sparse Bayesian Learning for Efficient Visual Tracking. PAMI 8, 1–13 (2005)Google Scholar
  15. 15.
    Avidan, S.: Support Vector Tracking. PAMI 8, 1064–1072 (2004)Google Scholar
  16. 16.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)zbMATHGoogle Scholar
  17. 17.
    Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Nonliner/Non-Gaussian Bayesian Tracking. Signal Processing 2, 174–188 (2002)Google Scholar
  18. 18.
    Philomin, V., Duraiswami, R., Davis, L.: Quasi-random sampling for condensation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 134–149. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 5, 603–619 (2002)Google Scholar
  20. 20.
    Zivkovic, Z., Krose, B.: An EM-like Algorithm for Color-Histogram-Based Object Tracking. In: Proceedings of CVPR (2004)Google Scholar
  21. 21.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. IJCV 2, 91–110 (2004)CrossRefGoogle Scholar
  22. 22.
    Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. PAMI 10, 1615–1630 (2005)Google Scholar
  23. 23.
    Viola, P., Jones, M.J.: Robust Real-Time Face Detection. IJCV 2, 137–154 (2004)CrossRefGoogle Scholar
  24. 24.
  25. 25.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yun Lei
    • 1
  • Xiaoqing Ding
    • 1
  • Shengjin Wang
    • 1
  1. 1.Electronic Engineering DepartmentTsinghua UniversityBeijingP.R. China

Personalised recommendations