Applying Preattentive Visual Guidance in Document Image Analysis

  • Di Wen
  • Xiaoqing Ding
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4153)


In this paper, we present a novel methodology on document image analysis (DIA) which harnesses the mechanism of preattentive visual guidance in human vision. Summarizing the psychophysical discoveries on preattentive vision, we propose two types of computational simulations of this biological process: the visual similarity clustering and visual saliency detection, based on which we implement a novel biological plausible way to guide the interpretation of document images. Experimental results prove the efficiency of these two computational processes, whose outputs can be further utilized by other task-oriented DIA applications.


Document image analysis preattentive visual guidance texture synthesis dynamic clustering visual saliency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wong, K.Y., Casey, R.G., Wahl, F.M.: Document Analysis System. IBM Journal Res. Develop. 26(6), 647–656 (1982)CrossRefGoogle Scholar
  2. 2.
    Ittner, D.J., Baird, H.S.: Language-free layout analysis. In: Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR 1993), Tsukuba Science City, Japan, October 20-22, pp. 336–340 (1993)Google Scholar
  3. 3.
    Tang, Y.Y., Lee, S.-W., Suen, C.Y.: Automatic document processing: a survey. Pattern Recognition 29(12), 1931–1952 (1996)CrossRefGoogle Scholar
  4. 4.
    Nagy, G., Seth, S., Viswanathan, M.: A prototype document image analysis system for technical journals. IEEE Computer 25(7), 10–22 (1992)Google Scholar
  5. 5.
    Drivas, D., Amin, A.: Page Segmentation and Classification Utilizing Bottom-Up Approach. In: Proceedings of the third International Conference on Document Analysis and Recognition, August 14-16, pp. 610–614 (1995)Google Scholar
  6. 6.
    Liang, J., Phillips, I.T., Haralick, R.M.: An optimization methodology for document structure extraction on Latin character documents. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(7), 719–734 (2001)CrossRefGoogle Scholar
  7. 7.
    Jain, A.K., Bhattacharjee, S.: Text Segment Using Gabor Filters for Automatic Document Processing. Machine Vision and Applications 5(3), 169–184 (1992)CrossRefGoogle Scholar
  8. 8.
    Jain, A.K., Zhong, Y.: Page Segmentation Using Texture Analysis. Pattern Recognition 29(5), 743–770 (1996)CrossRefGoogle Scholar
  9. 9.
    Li, J., Gray, R.M.: Context-Based Multiscale Classification of Document Images Using Wavelet Coefficient Distributions. IEEE Trans. on Image Processing 9(9), 1604–1616 (2000)CrossRefGoogle Scholar
  10. 10.
    Chen, J.-L.: A simplified approach to the HMM based texture analysis and its application to document segmentation. Pattern Recognition Letters 18(10), 993–1007 (1997)CrossRefGoogle Scholar
  11. 11.
    Itti, L., Koch, C.: Computional Modeling of Visual Attention. Nature Reviews Neuroscience 2(3), 194–203 (2001)CrossRefGoogle Scholar
  12. 12.
    Healey, C.G., Booth, K.S., Enns, J.T.: High-speed visual estimation using preattentive processing. ACM Transactions on Computer Human Interaction (TOCHI) 3(2), 107–135 (1996)CrossRefGoogle Scholar
  13. 13.
    Julesz, B.: Visual pattern discrimination. IRE Transaction of Information Theory IT-8, 84–92 (1962)CrossRefGoogle Scholar
  14. 14.
    Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Computer Graphics Proceedings. SIGGRAPH 1995, Los Angeles, CA, USA, August 6-11, 1995, pp. 229–238 (1995)Google Scholar
  15. 15.
    Zhu, S.C., Wu, Y.N., Mumford, D.: Minimax Entropy Principle and Its Application to Texture Modeling. Neural Computation 9(8), 1627–1660 (1997)CrossRefGoogle Scholar
  16. 16.
    Treisman, A., Gelade, G.: A feature integration theory of attention. Cognitive Psychology 12(2), 97–136 (1980)CrossRefGoogle Scholar
  17. 17.
    Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4(4), 219–227 (1985)Google Scholar
  18. 18.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  19. 19.
    Liu, X., Wang, D.: Texture Classification Using Spectral Histogram. IEEE Trans. on Image Processing 12(6), 661–670 (2003)CrossRefGoogle Scholar
  20. 20.
    Zhu, S.C., Wu, Y.N., Mumford, D.B.: FRAME: Filters, Random fields And Maximum Entropy – towards a unified theory for texture modeling. International Journal of Computer Vision 27(3), 1–20 (1998)Google Scholar
  21. 21.
    Di, W., Ding, X.: Visual similarity based document layout analysis. Journal of Computer Science and Technology 21(3), 459–468 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Di Wen
    • 1
    • 2
  • Xiaoqing Ding
    • 1
    • 2
  1. 1.Department of Electronic EngineeringTsinghua University 
  2. 2.State Key Laboratory of Intelligent Technology and SystemsBeijingP.R. China

Personalised recommendations