A Novel Recovery Algorithm of Incomplete Observation Matrix for Converting 2-D Video to 3-D Content

  • Sungshik Koh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4153)


This paper studies on new recovery of incomplete observation matrix for converting existing 2-D video sequences to 3-D content. In situations when converting previously recorded monoscopic video to 3-D, several entries of the observation matrix have not been observed and other entries have been perturbed by the influence of noise. In this case, there is no simple solution of SVD factorization for shape from motion. In this paper, a new recovery algorithm is proposed for recovering missing feature point, by minimizing the influence of noise, using iteratively geometrical correlations between a 2-D observation matrix and 3-D shape. The results in practical situations demonstrated with synthetic and real video sequences verify the efficiency and flexibility of the proposed method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fehn, C., Kauff, P., Op de Beeck, M., Ernst, F., Jsselsteijn, W.I., Polleys, M., Van Gool, L., Ofek, E., Sexton, I.: An Evolutionary and Optimized Approach on 3D-TV. In: Proc. IBC 2002, pp. 357–365 (2002)Google Scholar
  2. 2.
    op de Beeck, M., Wilinski, P., Fehn, C., Kauff, P., Jsselsteijn, W.I., Polleys, M., Van Gool, L., Ofek, E., Sexton, I.: Towards an Optimized 3D Broadcast Chain. In: Proc. SPIE IT-Com 2002, pp. 357–365 (2002)Google Scholar
  3. 3.
    Tomasi, Kanade, T.: Shape and motion from image streams under orthography: A factorization method. Int. J. of Computer Vision 9(2), 137–154 (1992)CrossRefGoogle Scholar
  4. 4.
    Sturm, P., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Poelman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. on PAMI 19(3), 206–218 (1997)Google Scholar
  6. 6.
    Morita, T., Kanade, T.: A sequential factorization method for recovering shape and motion from image streams. IEEE Trans. on PAMI 19(8), 858–867 (1997)Google Scholar
  7. 7.
    Aguiar, P.M.Q., Moura, J.M.F.: Rank 1 Weighted Factorization for 3D Structure Recovery: Algorithms and Performance Analysis. IEEE Trans. on PAMI 25(9), 1134–1149 (2003)Google Scholar
  8. 8.
    Irani, M., Anandan, P.: Factorization with uncertainty. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 539–553. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Shapiro, L.: Affine Analysis of Image Sequences. Cambridge University Press, Cambridge (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    Quan, L., Kanade, T.: A factorization method for affine structure from line correspondences. In: Proc. IEEE CVPR, San Francisco CA, USA, pp. 803–808 (1996)Google Scholar
  11. 11.
    Morris, D., Kanade, T.: A unified factorization algorithm for points, line segments and planes with uncertainty models. In: Proc. IEEE ICCV, pp. 696–702 (1998)Google Scholar
  12. 12.
    Aguiar, P.M.Q., Moura, J.M.F.: Three-dimensional modeling from two dimensional video. IEEE Trans. on Image Processing 10(10), 1544–1551 (2001)CrossRefGoogle Scholar
  13. 13.
    Jacobs, D.: Linear fitting with missing data for structure-from-motion. In: Proc. CVIU, vol. 82, pp. 57–81 (2001)Google Scholar
  14. 14.
    Guerreiro, R.F.C., Aguiar, P.M.Q.: Estimation of Rank Deficient Matrices from Partial Observations: Two-Step Iterative Algorithms. In: Proc. EMMCVPR, pp. 450–466 (2003)Google Scholar
  15. 15.
    Sun, Z., Ramesh, V., Tekalp, A.M.: Error characterization of the factorization metho. Computer Vision and Image Understanding 82, 110–137 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Daniilidis, K., Spetsakis, M.: Understanding noise sensitivity in structure from motion. Visual Navigation, 61–88 (1996)Google Scholar
  17. 17.
    Morris, D.D., Kanatani, K., Kanade, T.: Uncertainty modeling for optimal structure from motion. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 200–217. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Szeliski, R., Kang, S.B.: Shape ambiguities in structure-from-motion. IEEE Trans. on PAMI 19, 506–512 (1997)Google Scholar
  19. 19.
    Harris, C.J., Stephens, M.: A Combined Corner and Edge Detector. In: Proc. Alvey Vision Conf., pp. 147–151 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sungshik Koh
    • 1
  1. 1.Insan Innovation Telecom Co., Ltd.GwnagjuKorea

Personalised recommendations