Advertisement

Looking for Prototypes by Genetic Programming

  • L. P. Cordella
  • C. De Stefano
  • F. Fontanella
  • A. Marcelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4153)

Abstract

In this paper we propose a new genetic programming based approach for prototype generation in Pattern Recognition problems. Prototypes consist of mathematical expressions and are encoded as derivation trees. The devised system is able to cope with classification problems in which the number of prototypes is not a priori known. The approach has been tested on several problems and the results compared with those obtained by other genetic programming based approaches previously proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & sons, Inc., Chichester (2001)zbMATHGoogle Scholar
  2. 2.
    Zhang, G.P.: Neural networks for classification: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C 30(4), 451–462 (2000)CrossRefGoogle Scholar
  3. 3.
    Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  4. 4.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology. In: Control and Artificial Intelligence. MIT Press, Cambridge (1992)Google Scholar
  5. 5.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1989)zbMATHGoogle Scholar
  6. 6.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  7. 7.
    Koza, J.R.: Genetic programming II: automatic discovery of reusable programs. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  8. 8.
    Sette, S., Boullart, L.: Genetic programming: principles and applications. Engineering Applications of Artificial Intelligence 14, 727–736 (2001)CrossRefGoogle Scholar
  9. 9.
    Bastian, A.: Identifying fuzzy models utilizing genetic programming. Fuzzy Sets and Systems 113, 333–350 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Muni, D.P., Pal, N.R., Das, J.: A novel approach to design classifiers using genetic programming. IEEE Trans. Evolutionary Computation 8, 183–196 (2004)CrossRefGoogle Scholar
  11. 11.
    Agnelli, D., Bollini, A., Lombardi, L.: Image classification: an evolutionary approach. Pattern Recognition Letters 23, 303–309 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Cordella, L.P., De Stefano, C., Fontanella, F., Marcelli, A.: Genetic programming for generating prototypes in classification problems. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1149–1155. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • L. P. Cordella
    • 1
  • C. De Stefano
    • 2
  • F. Fontanella
    • 1
  • A. Marcelli
    • 3
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Napoli Federico IINapoliItaly
  2. 2.Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell’Informazione e Matematica IndustrialeUniversità di CassinoCassinoItaly
  3. 3.Dipartimento di Ingegneria dell’Informazione e Ingegneria ElettricaUniversità di SalernoFiscianoItaly

Personalised recommendations