Approximate Vehicle Waiting Time Estimation Using Adaptive Video-Based Vehicle Tracking

  • Li Li
  • Fei-Yue Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4153)


During the last two decades, significant research efforts had been made in developing vision-based automatic traffic monitoring systems in order to improve driving efficiency and reduce traffic accidents. This paper presents a practical vehicle waiting time estimation method using adaptive video-based vehicle tracking method. Specifically, it is designed to deal with lower image quality, inappropriate camera positions, vague lane/road markings and complex driving scenarios. The spatio-temporal analysis is integrated with shape hints to improve performance. Experiment results show the effectiveness of the proposed approach.


IEEE Transaction Intelligent Transportation System Hough Transformation Vehicle Detection Road Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inigo, R.M.: Traffic monitoring and control using machine vision: a survey. IEEE Transactions on Industrial Electronics 32(3), 177–185 (1985)CrossRefGoogle Scholar
  2. 2.
    Masaki, I.: Machine-vision systems for intelligent transportation systems. IEEE Intelligent Systems 13(6), 24–31 (1998)CrossRefGoogle Scholar
  3. 3.
    Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image and Vision Computing 21(4), 359–381 (2003)CrossRefGoogle Scholar
  4. 4.
    Hu, W., Tan, T., Wang, L., et al.: A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man and Cybernetics, Part C 34(3), 334–352 (2004)CrossRefGoogle Scholar
  5. 5.
    Mirchandani, P., Wang, F.-Y.: RHODES to Intelligent Transportation Systems. IEEE Intelligent Systems 20(1), 10–15 (2005)CrossRefGoogle Scholar
  6. 6.
    Li, L., Song, J., Wang, F.-Y., et al.: New developments and research trends for intelligent vehicles. IEEE Intelligent Systems 20(4), 10–14 (2005)CrossRefGoogle Scholar
  7. 7.
    Scarzello, J., Lenko, D., Brown, R., et al.: SPVD: A magnetic vehicle detection system using a low power magnetometer. IEEE Transactions on Magnetics 14(5), 574–576 (1978)CrossRefGoogle Scholar
  8. 8.
    Uchiyama, T., Mohri, K., Itho, H., et al.: Car traffic monitoring system using MI sensor built-in disk set on the road. IEEE Transactions on Magnetics 36(5), 3670–3672 (2000)CrossRefGoogle Scholar
  9. 9.
    Kitazume, S., Kondo, H.: Advances in millimeter-wave subsystems in Japan. IEEE Transactions on Microwave Theory and Techniques 39(5), 775–781 (1991)CrossRefGoogle Scholar
  10. 10.
    Fathy, M., Siyal, M.Y.: A window-based image processing technique for quantitative and qualitative analysis of road traffic parameters. IEEE Transactions on Vehicular Technology 47(4), 1342–1349 (1998)CrossRefGoogle Scholar
  11. 11.
    Li, X., Liu, Z.-Q., Leung, K.-M.: Detection of vehicles from traffic scenes using fuzzy integrals. Pattern Recognition 35(4), 967–980 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Gupte, S., Masoud, O., Martin, R.F.K., et al.: Detection and classification of vehicles. IEEE Transactions on Intelligent Transportation Systems 3(1), 37–47 (2002)CrossRefGoogle Scholar
  13. 13.
    Ha, D.M., Lee, J.-M., Kim, Y.-D.: Neural-edge-based vehicle detection and traffic parameter extraction. Image and Vision Computing 22(5), 899–907 (2004)CrossRefGoogle Scholar
  14. 14.
    Coifman, B., Beymer, D., McLauchlan, P., et al.: A real-time computer vision system for vehicle tracking and traffic surveillance. Transportation Research Part C, 6, 271–288 (1998)CrossRefGoogle Scholar
  15. 15.
    Park, Y.: Shape-resolving local thresholding for object detection. Pattern Recognition Letters 22(8), 883–890 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Enkelmann, W.: Interpretation of traffic scenes by evaluation of optical flow fields from image sequences. IFAC Control Computers, Communications in Transportation (1989)Google Scholar
  17. 17.
    Maurin, B., Masoud, O., Papanikolopoulos, N.P.: Tracking all traffic: computer vision algorithms for monitoring vehicles, individuals, and crowds. IEEE Robotics and Automation Magazine 12(1), 29–36 (2005)CrossRefGoogle Scholar
  18. 18.
    Hoose, N.: IMPACT: an image analysis tool for motorway analysis and surveillance. Traffic Engineering Control Journal, 140–147 (1992)Google Scholar
  19. 19.
    Paragios, N., Tziritas, G.: Adaptive detection and localization of moving objects in image sequences. Signal Processing: Image Communication 14, 277–296 (1999)CrossRefGoogle Scholar
  20. 20.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(3), 266–280 (2000)CrossRefGoogle Scholar
  21. 21.
    Sifakis, E., Tziritas, G.: Fast marching to moving object location. In: Proceedings of International Conference on Scale Space Theories in Computer Vision (1999)Google Scholar
  22. 22.
    Sifakis, E., Grinias, I., Tziritas, G.: Video segmentation using fast marching and region growing algorithms. EURASIP Journal on Applied Signal Processing, 379–388 (2002)Google Scholar
  23. 23.
    Cucchiara, R., Piccardi, M., Mello, P.: Image analysis and rule-based reasoning for a traffic monitoring system. IEEE Transactions on Intelligent Transportation Systems 1(2), 119–130 (2000)CrossRefGoogle Scholar
  24. 24.
    Cucchiara, R., Grana, C., Piccardi, M., et al.: Detecting moving objects, ghosts, and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1337–1342 (2003)CrossRefGoogle Scholar
  25. 25.
    Lakshmanan, S., Grimmer, D.: A deformable template approach to detecting straight edges in radar images. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(4), 438–443 (1996)CrossRefGoogle Scholar
  26. 26.
    Ma, B., Lakshmanan, S., Hero, A.O.: Simultaneous detection of lane and pavement boundaries using model-based multi-sensor fusion. IEEE Transactions on Intelligent Transportation Systems 1(3), 135–147 (2000)CrossRefGoogle Scholar
  27. 27.
    Magee, D.R.: Tracking multiple vehicles using foreground, background and motion models. Image and Vision Computing 22(2), 143–155 (2004)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Matthews, N.D., An, P.E., Harris, C.J.: Vehicle detection and recognition in grey-scale imagery. In: The Second International Workshop on Intelligent Autonomous Vehicles, pp. 1–6 (1995)Google Scholar
  29. 29.
    Sun, Z., Miller, R., Bebis, G.: A real-time precrash vehicle detection system. In: Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision, pp. 171–176 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Li Li
    • 1
  • Fei-Yue Wang
    • 1
    • 2
  1. 1.University of ArizonaTucsonUSA
  2. 2.Chinese Academy of SciencesBeijingChina

Personalised recommendations