Advertisement

A Fast Linear-Arithmetic Solver for DPLL(T)

  • Bruno Dutertre
  • Leonardo de Moura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4144)

Abstract

We present a new Simplex-based linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of theory propagation. We also present a new and simple approach for solving strict inequalities. Experimental results show substantial performance improvements over existing tools that use other Simplex-based solvers in DPLL(T) decision procedures. The new solver is even competitive with state-of-the-art tools specialized for the difference logic fragment.

Keywords

Strict Inequality Slack Variable Difference Logic Defense Advance Research Project Agency Elementary Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Barrett, C., de Moura, L., Stump, A.: Design and Results of the 1st Satisfiability Modulo Theories Competition (SMT-COMP 2005). Journal of Automated Reasoning (to appear, 2006)Google Scholar
  3. 3.
    Dantzig, G., Curtis, B.: Fourier-Motzkin Elimination and its Dual. Journal of Combinatorial Theory, 288–297 (1973)Google Scholar
  4. 4.
    Barrett, C., Berezin, S.: CVC Lite: A New Implementation of the Cooperating Validity Checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Stump, A., Barrett, C., Dill, D.: CVC: A Cooperating Validity Checker. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 500. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Barrett, C., Dill, D., Levitt, J.: Validity Checking for Combinations of Theories with Equality. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 187–201. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Chvatal, V.: Linear Programming. W.H. Freeman, New York (1983)MATHGoogle Scholar
  8. 8.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz, S., Sebastiani, R.: The MathSAT 3 system. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 315–321. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Filliâtre, J.C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated Canonization and Solving. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Sheini, H.M., Sakallah, K.A.: A Scalable Method for Solving Satisfiability of Integer Linear Arithmetic Logic. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 241–256. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Rueß, H., Shankar, N.: Solving Linear Arithmetic Constraints. Technical Report SRI-CSL-04-01, SRI International (2004)Google Scholar
  12. 12.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A Theorem Prover for Program Checking. Technical Report HPL-2003-148, HP Labs (2003)Google Scholar
  13. 13.
    Necula, G.: Compiling with Proofs. Technical Report CMU-CS-98-154, School of Computer Science, Carnegie Mellon University (1998)Google Scholar
  14. 14.
    Badros, G., Borning, A., Stuckey, P.: The Cassowary Linear Arithmetic Constraint Solving Algorithm. ACM Transactions on Computer-Human Interaction (TOCHI) 8(4), 267–306 (2001)CrossRefGoogle Scholar
  15. 15.
    Ranise, S., Tinelli, C.: The satisfiability modulo theories library (smt-lib) (2006), Available at: http://goedel.cs.uiowa.edu/smtib
  16. 16.
    Dutertre, B., de Moura, L.: Integrating Simplex with DPLL(T). Technical report, CSL-06-01, SRI International (2006)Google Scholar
  17. 17.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)MATHGoogle Scholar
  18. 18.
    Nemhauser, G., Wosley, L.: Integer and Combinatorial Optimization. Wiley, Chichester (1999)MATHGoogle Scholar
  19. 19.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Ranise, S., Sebastiani, R.: Efficient Satisfiability Modulo Theories via Delayed Theory Combination. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 335–349. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Wang, C., Ivancic, F., Ganai, M., Gupta, A.: Deciding Separation Logic Formulae with SAT and Incremental Negative Cycle Elimination. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 322–336. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bruno Dutertre
    • 1
  • Leonardo de Moura
    • 1
  1. 1.Computer Science LaboratorySRI InternationalMenlo ParkUSA

Personalised recommendations