Second-Order Simple Grammars

  • Colin Stirling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4137)

Abstract

Higher-order notations for trees have a venerable history from the 1970s and 1980s when schemes (that is, functional programs without interpretations) and their relationship to formal language theory were first studied. Included are higher-order recursion schemes and pushdown automata. Automata and language theory study finitely presented mechanisms for generating languages. Instead of language generators, one can view them as process calculi, propagators of possibly infinite labelled transition systems. Recently, model-checking techniques have been successfully extended to these higher-order notations in the deterministic case [18,9,8,21].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aehlig, K., De Miranda, J., Ong, C.-H.L.: Safety is not a restriction at level 2 for string languages. LNCS, vol. 3411, pp. 490–511 (2005)Google Scholar
  2. 2.
    Aho, A.: Indexed grammars–an extension of context-free grammars. Journal of ACM 15, 647–671 (1968)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Aho, A.: Nested stack automata. Journal of ACM 16, 383–406 (1969)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Baeten, J., Bergstra, J., Klop, J.: Decidability of bisimulation equivalence for processes generating context-free languages. Journal of ACM 40, 653–682 (1993)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Blumensath, A.: A pumping lemma for higher-order pushdown automata (preprint 2004)Google Scholar
  6. 6.
    Bouajjani, A., Meyer, A.: Symbolic Reachability Analysis of Higher-Order Context-Free Processes. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 135–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 545–623. North-Holland, Amsterdam (2001)CrossRefGoogle Scholar
  8. 8.
    Cachat, T.: Higher order pushdown automata, the Caucal hierarchy of graphs and parity games. LNCS, vol. 2719, pp. 556–569 (2003)Google Scholar
  9. 9.
    Caucal, D.: On Infinite Terms Having a Decidable Monadic Theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Courcelle, B.: A representation of trees by languages I and II. Theoretical Computer Science 6, 255–279 and 7, 25–55 (1978)Google Scholar
  11. 11.
    Damm, W.: The IO- and OI-hierarchy. Theoretical Computer Science 25, 95–169 (1982)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-hierarchy. Information and Control 71, 1–32 (1986)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Engelfriet, J.: Iterated stack automata and complexity classes. Information and Computation 95, 21–75 (1991)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fischer, M.: Grammars with macro-like productions. In: Procs. 9th Annual IEEE Symposium on Switching and Automata Theory, pp. 131–142 (1968)Google Scholar
  15. 15.
    Freidman, E.: The inclusion problem for simple languages. Theoretical Computer Science 1, 297–316 (1976)CrossRefGoogle Scholar
  16. 16.
    Gilman, R.: A shrinking lemma for indexed languages. Theoretical Computer Science 163, 277–281 (1996)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Jančar, P., Srba, J.: Undecidability results for bisimilarity on prefix rewrite systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 277–291. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Korenjak, A., Hopcroft, J.: Simple deterministic languages. In: Procs. 7th Annual IEEE Symposium on Switching and Automata Theory, pp. 36–46 (1966)Google Scholar
  20. 20.
    Maslov, A.: Multilevel stack automata. Problems of Information Transmission 12, 38–43 (1976)Google Scholar
  21. 21.
    Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes (preprint 2006)Google Scholar
  22. 22.
    Parchmann, R., Duske, J., Specht, J.: On deterministic indexed languages. Information and Control 45, 48–67 (1980)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Sénizergues, G.: L(A) = L(B)? decidability results from complete formal systems. Theoretical Computer Science 251, 1–166 (2001)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Sénizergues, G.: L(A) = L(B)? a simplified decidability proof. Theoretical Computer Science 281, 555–608 (2002)CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Sénizergues, G.:The equivalence problem for t-turn DPDA is co-NP. LNCS, vol. 2719, pp. 478–489 (2003)Google Scholar
  26. 26.
    Sénizergues, G.: The bisimulation problem for equational graphs of finite out-degree. SIAM Journal of Computing 34, 1025–1106 (2005)CrossRefMATHGoogle Scholar
  27. 27.
    Stirling, C.: Decidability of DPDA equivalence. Theoretical Computer Science 255, 1–31 (2001)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 821–832. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Vijay-Shanker, K., Weir, D.: The equivalence of four extensions of context-free grammars. Mathematical Systems Theory 27, 511–546 (1994)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Colin Stirling
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations