Controller Synthesis for MTL Specifications

  • Patricia Bouyer
  • Laura Bozzelli
  • Fabrice Chevalier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4137)


We consider the control problem for timed automata against specifications given as MTL formulas. The logic MTL is a linear-time timed temporal logic which extends LTL with timing constraints on modalities, and recently, its model-checking has been proved decidable in several cases. We investigate these decidable fragments of MTL (full MTL when interpreted over finite timed words, and Safety-MTL when interpreted over infinite timed words), and prove two kinds of results. (1) We first prove that, contrary to model-checking, the control problem is undecidable. Roughly, the computation of a lossy channel system could be encoded as a model-checking problem, and we prove here that a perfect channel system can be encoded as a control problem. (2) We then prove that if we fix the resources of the controller (by resources we mean clocks and constants that the controller can use), the control problem becomes decidable. This decidability result relies on properties of well (and better) quasi-orderings.


Control Problem Temporal Logic Winning Strategy Undesired Behaviour Controller Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulla, P.A., Bouajjani, A., d’Orso, J.: Deciding monotonic games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 1–14. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Nylén, A.: Better is better than well: On efficient verification of infinite-state systems. In: Proc. 15th Ann. Symp. Logic in Computer Science (LICS 2000), pp. 132–140. IEEE Comp. Soc. Press, Los Alamitos (2000)Google Scholar
  3. 3.
    Abdulla, P.A., Nylén, A.: Timed Petri nets and bqos. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of surprise in timed games. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Information and Computation 104(1), 35–77 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Alur, R., Madhusudan, P.: Decision Problems for Timed Automata: A Survey. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proc. IFAC Symp. System Structure and Control, pp. 469–474. Elsevier Science, Amsterdam (1998)Google Scholar
  9. 9.
    Bouyer, P., Bozzelli, L., Chevalier, F.: Controller synthesis for MTL specifications. Research report, Laboratoire Spécification & Vérification, ENS de Cachan, France (2006)Google Scholar
  10. 10.
    Bouyer, P., Chevalier, F., Markey, N.: On the Expressiveness of TPTL and MTL. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed Control with Partial Observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 180–192. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 30(2), 323–342 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    D’Souza, D., Madhusudan, P.: Timed Control Synthesis for External Specifications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics. Formal Methods Letters (to appear, 2006)Google Scholar
  15. 15.
    Faella, M., La Torre, S., Murano, A.: Automata-Theoretic Decision of Timed Games. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 94–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Faella, M., La Torre, S., Murano, A.: Dense real-time games. In: Proc. 17th Ann. Symp. Logic in Computer Science (LICS 2002), pp. 167–176. IEEE Comp. Soc. Press, Los Alamitos (2002)CrossRefGoogle Scholar
  17. 17.
    Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theoretical Computer Science 221, 369–392 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  19. 19.
    Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic – and back. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–539. Springer, Heidelberg (1995)Google Scholar
  20. 20.
    Lasota, S., Walukiewicz, I.: Alternating Timed Automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Ouaknine, J., Worrell, J.B.: On the language inclusion problem for timed automata: Closing a decidability gap. In: Proc. 19th Ann. Symp. Logic in Computer Science (LICS 2004), pp. 54–63. IEEE Comp. Soc. Press, Los Alamitos (2004)CrossRefGoogle Scholar
  22. 22.
    Ouaknine, J., Worrell, J.B.: On the decidability of metric temporal logic. In: Proc. 19th Ann. Symp. Logic in Computer Science (LICS 2005), pp. 188–197. IEEE Comp. Soc. Press, Los Alamitos (2005)CrossRefGoogle Scholar
  23. 23.
    Ouaknine, J., Worrell, J.B.: On Metric Temporal Logic and Faulty Turing Machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Ouaknine, J., Worrell, J.B.: Safety metric temporal logic is fully decidable. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Laura Bozzelli
    • 1
  • Fabrice Chevalier
    • 1
  1. 1.LSV, CNRS & ENS CachanFrance

Personalised recommendations