Advertisement

Concurrent Rewriting for Graphs with Equivalences

  • Paolo Baldan
  • Fabio Gadducci
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4137)

Abstract

Several applications of graph rewriting systems (notably, some encodings of calculi with name passing) require rules which, besides deleting and generating graph items, are able to coalesce some parts of the graph. This latter feature forbids the development of a satisfactory concurrent semantics for rewrites (intended as a partial order description of the steps in a computation). This paper proposes the use of graphs with equivalences, i.e., (typed hyper-) graphs equipped with an equivalence over nodes, for the analysis of distributed systems. The formalism is amenable to the tools of the double-pushout approach to rewriting, including the theoretical results associated to its concurrent features. The formalism is tested against the encoding of a simple calculus with name mobility, namely the solo calculus.

Keywords

Concurrent graph rewriting dpo approach graphical encoding of nominal calculi graph process semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldan, P., Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Rossi, F.: Concurrent semantics of algebraic graph transformation. In: Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 3, pp. 107–187. World Scientific, Singapore (1999)Google Scholar
  2. 2.
    Baldan, P., Corradini, A., Heindel, T., König, B., Sobociński, P.: Processes for adhesive rewriting systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 202–216. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., Corradini, A., Montanari, U.: Unfolding and event structure semantics for graph grammars. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 73–89. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Cardelli, L., Gordon, A.: Mobile ambients. Th. Comp. Sc. 240, 177–213 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26, 241–265 (1996)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation I: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 163–245. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  7. 7.
    Drewes, F., Habel, A., Kreowski, H.-J.: Hyperedge replacement graph grammars. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 95–162. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  8. 8.
    Ehrig, H., Habel, A., Kreowski, H.-J., Parisi-Presicce, F.: Parallelism and concurrency in high-level replacement systems. Math. Str. Comp. Sc. 1, 361–404 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Gadducci, F.: Term Graph Rewriting for the π-Calculus. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 37–54. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Gadducci, F., Montanari, U.: A concurrent graph semantics for mobile ambients. In: Brookes, S., Mislove, M. (eds.) Mathematical Foundations of Programming Semantics. ENTCS, vol. 45. Elsevier, Amsterdam (2001)Google Scholar
  11. 11.
    Gadducci, F., Montanari, U.: Graph processes with fusions: concurrency by colimits, again. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 84–100. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Gardner, P., Wischik, L.: Explicit fusion. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 373–382. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Golz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Information and Control 57, 125–147 (1983)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited. Math. Str. Comp. Sc. 11, 637–688 (2001)zbMATHGoogle Scholar
  15. 15.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Informatique Théorique et Applications/Theor. Informatics and Applications 39, 511–545 (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Laneve, C., Victor, B.: Solos in concert. Math. Str. Comp. Sc. 13, 675–683Google Scholar
  17. 17.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Part I and II. Information and Computation 100, 1–77 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Parrow, J., Victor, B.: The fusion calculus: Expressiveness and simmetry in mobile processes. In: Pratt, V. (ed.) Logic in Computer Science, pp. 176–185. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Fabio Gadducci
    • 2
  • Ugo Montanari
    • 2
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità Ca’ Foscari di Venezia 
  2. 2.Dipartimento di InformaticaUniversità of Pisa 

Personalised recommendations