Sortings for Reactive Systems

  • Lars Birkedal
  • Søren Debois
  • Thomas Hildebrandt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4137)


We investigate sorting or typing for Leifer and Milner’s reactive systems. We focus on transferring congruence properties for bisimulations from unsorted to sorted systems. Technically, we give a general definition of sorting; we adapt Jensen’s work on the transfer of congruence properties to this general definition; we construct a predicate sorting, which for any decomposible predicate P filters out agents not satisfying P; we prove that the predicate sorting preserves congruence properties and that it suitably retains dynamics; and finally, we show how the predicate sortings can be used to achieve context-aware reaction.


Reactive System Label Transition System Forgetful Functor Follow Diagram Commute Reaction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sewell, P.: From rewrite rules to bisimulation congruences. Theoretical Computer Science 274(1–2), 183–230 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Jensen, O.H., Milner, R.: Bigraphs and transitions. In: POPL 2003: Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 38–49. ACM Press, New York (2003)CrossRefGoogle Scholar
  4. 4.
    Jensen, O.H., Milner, R.: Bigraphs and mobile processes (revised). Technical Report UCAM-CL-TR-580, University of Cambridge Computer Laboratory (2004)Google Scholar
  5. 5.
    Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computation 204(1), 60–122 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Sassone, V., Sobociński, P.: Deriving Bisimulation Congruences: 2-Categories Vs Precategories. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 409–424. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Sassone, V., Sobocinski, P.: Reactive systems over cospans. In: LICS 2005: Proceedings of the twentieth annual IEEE symposium on Logic in computer science, pp. 311–320. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  8. 8.
    Bruni, R., Gadducci, F., Montanari, U., Sobociński, P.: Deriving Weak Bisimulation Congruences from Reduction Systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 293–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Jensen, O.H.: Mobile Processes in Bigraphs. PhD thesis, University of Aalborg (forthcoming, 2006)Google Scholar
  10. 10.
    Milner, R., Leifer, J.J.: Transition systems, link graphs and Petri nets. Technical report, University of Cambridge, Computer Laboratory (2004)Google Scholar
  11. 11.
    Bundgaard, M., Hildebrandt, T.: Bigraphical semantics of higher-order mobile embedded resources with local names. In: GTVC 2005: Proceedings of the Graph Transformation for Verification and Concurrency workshop. Electronic Notes in Theoretical Computer Science, vol. 154, pp. 7–29. Elsevier, Amsterdam (2006)Google Scholar
  12. 12.
    Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., Niss, H.: Bigraphical Models of Context-aware Systems. Technical Report 74, IT University of Copenhagen (2005) ISBN: 87-7949-110-3Google Scholar
  13. 13.
    Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., Niss, H.: Bigraphical Models of Context-aware Systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 187–201. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Birkedal, L., Debois, S., Hildebrandt, T.: Sortings for reactive systems. Technical Report 84, IT University of Copenhagen (2006) ISBN 87-7949-124-3Google Scholar
  15. 15.
    Jacobs, B.: Categorical logic and type theory. Studies in logic and the foundation of mathematics, vol. 141. Elsevier, Amsterdam (1999)zbMATHGoogle Scholar
  16. 16.
    Poincaré, H.: Science and Method. Dover Publications, New York (1914) (Translation by Francis Maitland)Google Scholar
  17. 17.
    Conforti, G., Macedonio, D., Sassone, V.: Spatial Logics for Bigraphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 766–778. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Conforti, G., Macedonio, D., Sassone, V.: Spatial logics for bigraphs. Computer Science Report 02, University of Sussex (2005)Google Scholar
  19. 19.
    Braione, P., Picco, G.P.: On calculi for context-aware coordination. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 38–54. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    König, B.: A General Framework for Types in Graph Rewriting. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 373–384. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Honda, K.: Composing processes. In: POPL 1996: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 344–357 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lars Birkedal
    • 1
  • Søren Debois
    • 1
  • Thomas Hildebrandt
    • 1
  1. 1.IT University of Copenhagen 

Personalised recommendations