A Coupled Statistical Model for Face Shape Recovery

  • Mario Castelán
  • William A. P. Smith
  • Edwin R. Hancock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4109)


We focus on the problem of developing a coupled statistical model that can be used to recover surface height from brightness images of faces. The idea is to couple intensity and height by jointly modeling their combined variations. The models are constructed by performing Principal Component Analysis (PCA) on the shape coefficients for both intensity and height training data. By fitting the model to intensity data, the height information is implicitly recovered from the coupled shape parameters. Experiments show that the methods generate accurate surfaces from out-of training intensity images.


Face Recognition Couple Model Input Image Intensity Model Active Appearance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Atick, J., Griffin, P., Redlich, N.: Statistical approach to shape from shading: Reconstruction of three-dimensional face surfaces from single two-dimensional images. Neural Computation 8, 1321–1340 (1996)CrossRefGoogle Scholar
  2. 2.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: SIGGRAPH 1999: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, New York, NY, USA, pp. 187–194. ACM Press/Addison-Wesley Publishing Co. (1999)Google Scholar
  3. 3.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)CrossRefGoogle Scholar
  4. 4.
    Bors, A.G., Hancock, E.R., Wilson, R.C.: Terrain analysis using radar shape-from-shading. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(5) (2003)Google Scholar
  5. 5.
    Castelán, M., Hancock, E.: Acquiring height maps of faces from a single image. In: Proc. IEEE 3DPVT, pp. 183–190 (2004)Google Scholar
  6. 6.
    Cootes, T.F., Edwards, G.C., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Dovgard, R., Basri, R.: Statistical symmetric shape from shading for 3d structure recovery of faces. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 99–113. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Frankot, R., Chellapa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 438–451 (1988)CrossRefGoogle Scholar
  9. 9.
    Georghiades, A., Belhumeur, D., Kriegman, D.: From few to many: Illumination cone models fro face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 634–660 (2001)Google Scholar
  10. 10.
    Prados, E., Faugeras, O.: Unifying approaches and removing unrealistic assumptions in shape from shading: Mathematics can help. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 141–154. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Samaras, D., Metaxas, D.: Illumination constraints in deformable models for shape and light direction estimation. IEEE Trans. PAMI 25(2), 247–264 (2003)Google Scholar
  12. 12.
    Sirovich, L., Everson, R.: Management and analysis of large scientific datasets. The International Journal of Supercomputer Applications 6(1), 50–68 (1992)Google Scholar
  13. 13.
    Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)Google Scholar
  14. 14.
    Wu, Z., Li, L.: A line integration based method for depth recovery from surface normals. CVGIP 43(1), 53–66 (1988)Google Scholar
  15. 15.
    Zhao, W., Chellapa, R.: Illumination-insensitive face recognition using symmetric shape-from-shading. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 286–293. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mario Castelán
    • 1
  • William A. P. Smith
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations