A Distribution Method for Solving SAT in Grids

  • Antti E. J. Hyvärinen
  • Tommi Junttila
  • Ilkka Niemelä
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4121)

Abstract

The emerging large-scale computational grid infrastructure is providing an interesting platform for massive distributed computations. In this paper a novel distribution method called scattering is introduced for solving SAT problem instances in grid environments. The key advantages of scattering are that it can be used in conjunction with any sequential SAT solver (including industrial black box solvers), the distribution heuristic is strictly separated from the heuristic used in sequential solving, and it requires no communication between processes solving subproblems but still allows coordination of such processes. An implementation of the method has been developed for NorduGrid, a large widely distributed production-level grid running in Scandinavia.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search. In: AAAI/IAAI 1996, pp. 1194–1201. AAAI Press, Menlo Park (1996)Google Scholar
  2. 2.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)MATHCrossRefGoogle Scholar
  3. 3.
    Zhang, H., Bonacina, M., Hsiang, J.: PSATO: A distributed propositional prover and its application to quasigroup problems. J. Symbolic Computation 21(4), 543–560 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chrabakh, W., Wolski, R.: GridSAT: A chaff-based distributed SAT solver for the grid. In: SC 2003, IEEE, Los Alamitos (2003)Google Scholar
  5. 5.
    Jurkowiak, B., Li, C., Utard, G.: A parallelization scheme based on work stealing for a class of SAT solvers. Journal of Automated Reasoning 34(1), 73–101 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Sinz, C., Blochinger, W., Küchlin, W.: PaSAT — Parallel SAT-checking with lemma exchange: Implementation and applications. In: SAT 2001. Electronic Notes in Discrete Mathematics, vol. 9, pp. 12–13. Elsevier, Amsterdam (2001)Google Scholar
  7. 7.
    Blochinger, W., Sinz, C., Küchlin, W.: Parallel propositional satisfiability checking with distributed dynamic learning. J. Parallel Computing 29(7), 969–994 (2003)CrossRefGoogle Scholar
  8. 8.
    Forman, S., Segre, A.: NAGSAT: A randomized, complete, parallel solver for 3-SAT. In: SAT (2002), Online Presented at http://gauss.ececs.uc.edu/Conferences/SAT2002/sat2002list.html
  9. 9.
    Boehm, M., Speckenmeyer, E.: A fast parallel SAT-solver: Efficient workload balancing. Annals of Mathematics and Artificial Intelligence 17(4-3), 381–400 (1996)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Okushi, F.: Parallel cooperative propositional theorem proving. Annals of Mathematics and Artificial Intelligence 26(1-4), 59–85 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Speckenmeyer, E., Boehm, M., Heusch, P.: On the imbalance of distributions of solutions of CNF-formulas and its impact on satisfiability solvers. In: Satisfiability Problem: Theory and Applications, DIMACS, pp. 669–676 (1997)Google Scholar
  12. 12.
    Blochinger, W., Westje, W., Küchlin, W., Wedeniwski, S.: ZetaSAT – Boolean satisfiability solving on desktop grids. In: CCGrid 2005, pp. 1079–1086. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar
  13. 13.
    Gomes, C.P., Selman, B., Crato, N., Kautz, H.A.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. Automated Reasoning 24(1/2), 67–100 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2), 43–62 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Eerola, P., et al.: Building a production grid in Scandinavia. IEEE Internet Computing 7(4), 27–35 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhang, L.: SAT-solving: From Davis-Putnam to Zchaff and beyond, lecture notes (2003), Available online at http://research.microsoft.com/users/lintaoz/SATSolving/satsolving.htm
  17. 17.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: DAC 2001, pp. 530–535. ACM, New York (2001)CrossRefGoogle Scholar
  18. 18.
    Hyvärinen, A.E.J.: SATU: A system for distributed propositional satisfiability checking in computational grids. Research Report A100, Helsinki Univ. of Technology, Lab. for Theoretical Comp. Science, Espoo, Finland (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antti E. J. Hyvärinen
    • 1
  • Tommi Junttila
    • 1
  • Ilkka Niemelä
    • 1
  1. 1.Laboratory for Theoretical Computer ScienceHelsinki University of Technology 

Personalised recommendations