Dependency Quantified Horn Formulas: Models and Complexity

  • Uwe Bubeck
  • Hans Kleine Büning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4121)


Dependency quantified Boolean formulas (DQBF) extend quantified Boolean formulas with Henkin-style partially ordered quantifiers. It has been shown that this is likely to yield more succinct representations at the price of a computational blow-up from PSPACE to NEXPTIME. In this paper, we consider dependency quantified Horn formulas (DQHORN), a subclass of DQBF, and show that the computational simplicity of quantified Horn formulas is preserved when adding partially ordered quantifiers.

We investigate the structure of satisfiability models for DQHORN formulas and prove that for both DQHORN and ordinary QHORN formulas, the behavior of the existential quantifiers depends only on the cases where at most one of the universally quantified variables is zero. This allows us to transform DQHORN formulas with free variables into equivalent QHORN formulas with only a quadratic increase in length.

An application of these findings is to determine the satisfiability of a dependency quantified Horn formula Φ with |∀| universal quantifiers in time O(| ∀ |·|Φ|), which is just as hard as QHORN-SAT.


Free Variable Conjunctive Normal Form Truth Assignment Boolean Formula Propositional Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayari, A., Basin, D.: QUBOS: Deciding Quantified Boolean Logic using Propositional Satisfiability Solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Benedetti, M.: Quantifier Trees for QBFs. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 378–385. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Biere, A.: Resolve and Expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bubeck, U., Kleine Büning, H., Zhao, X.: Quantifier Rewriting and Equivalence Models for Quantified Horn Formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 386–392. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Coste-Marquis, S., Le Berre, D., Letombe, F.: A Branching Heuristics for Quantified Renamable Horn Formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 393–399. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Dowling, W., Gallier, J.: Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae. J. of Logic Programming 1(3), 267–284 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Egly, U., Seidl, M., Tompits, H., Woltran, S., Zolda, M.: Comparing Different Prenexing Strategies for Quantified Boolean Formulas. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 214–228. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantifier structure in search based procedures for QBFs. In: Proc. Design, Automation and Test in Europe (DATE 2006) (2006)Google Scholar
  9. 9.
    Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods (Warsaw, 1961), pp. 167–183 (1961)Google Scholar
  10. 10.
    Horn, A.: On sentences which are true of direct unions of algebras. Journal of Symbolic Logic 16(1), 14–21 (1951)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  12. 12.
    Kleine Büning, H., Subramani, K., Zhao, X.: On Boolean Models for Quantified Boolean Horn Formulas. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 93–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Le Berre, D., Narizzano, M., Simon, L., Tacchella, A.: The second QBF solvers comparative evaluation. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 376–392. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Letz, R.: Advances in Decision Procedures for Quantified Boolean Formulas. In: Proc. IJCAR Workshop on Theory and Applications of Quantified Boolean Formulas (2001)Google Scholar
  15. 15.
    Mneimneh, M., Sakallah, K.A.: Computing Vertex Eccentricity in Exponentially Large Graphs: QBF Formulation and Solution. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 411–425. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Peterson, G., Azhar, S., Reif, J.: Lower Bounds for Multiplayer Non-Cooperative Games of Incomplete Information. Computers and Mathematics with Applications 41(7-8), 957–992 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Rintanen, J.: Constructing Conditional Plans by a Theorem-Prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)zbMATHGoogle Scholar
  18. 18.
    Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 200. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Uwe Bubeck
    • 1
  • Hans Kleine Büning
    • 2
  1. 1.International Graduate School, Dynamic Intelligent SystemsUniversität PaderbornPaderbornGermany
  2. 2.Department of Computer ScienceUniversität PaderbornPaderbornGermany

Personalised recommendations