Fast and Flexible Difference Constraint Propagation for DPLL(T)

  • Scott Cotton
  • Oded Maler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4121)


In the context of DPLL(T), theory propagation is the process of dynamically selecting consequences of a conjunction of constraints from a given set of candidate constraints. We present improvements to a fast theory propagation procedure for difference constraints of the form xyc. These improvements are demonstrated experimentally.


Consistency Check Constraint Propagation Priority Queue Satisfying Assignment Constraint Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cherkassky, B.V., Goldberg, A.V.: Negative-cycle detection algorithms. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 349–363. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT Press, Cambridge (1990)zbMATHGoogle Scholar
  3. 3.
    Cotton, S.: Satisfiability checking with difference constraints. Master’s thesis, Max Planck Institute (2005)Google Scholar
  4. 4.
    Cotton, S., Maler, O.: Satisfiability modulo theory chains with DPLL(T). In Verimag Technical Report (2006),
  5. 5.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(1), 201–215 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eèn, N., Sorensson, N.: Minisat – a sat solver with conflict-clause minimization. In: SAT 2005 (2005)Google Scholar
  9. 9.
    Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic shortest paths and negative cycles detection on digraphs with arbitrary arc weights. In: European Symposium on Algorithms, pp. 320–331 (1998)Google Scholar
  10. 10.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Goldberg, A.V.: Shortests path algorithms: Engineering aspects. In: Proceedings of the Internation Symposium of Algorithms and Computation (2001)Google Scholar
  12. 12.
    Goldberg, E., Novikov, Y.: Berkmin: A fast and robust SAT solver (2002)Google Scholar
  13. 13.
    Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. Assoc. Comput. Mach. 24(1) (1977)Google Scholar
  14. 14.
    Marquez-Silva, J.P., Sakallah, K.A.: Grasp – a new search algorithm for satisfiability. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 220–227. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC 2001 (2001)Google Scholar
  16. 16.
    Niebert, P., Mahfoudh, M., Asarin, E., Bozga, M., Maler, O., Jain, N.: Verification of Timed Automata via Satisfiability Checking. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 225–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 36–50. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Ranise, S., Tinelli, C.: The SMT-LIB format: An initial proposal. In: PDPAR (July 2003)Google Scholar
  20. 20.
    Tarjan, R.E.: Shortest paths. AT&T Technical Reports. AT&T Bell Laboratories (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Scott Cotton
    • 1
  • Oded Maler
    • 1
  1. 1.Verimag, Centre ÉquationGièresFrance

Personalised recommendations