Advertisement

On SAT Modulo Theories and Optimization Problems

  • Robert Nieuwenhuis
  • Albert Oliveras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4121)

Abstract

Solvers for SAT Modulo Theories (SMT) can nowadays handle large industrial (e.g., formal hardware and software verification) problems over theories such as the integers, arrays, or equality. Here we show that SMT approaches can also efficiently solve problems that, at first sight, do not have a typical SMT flavor. In particular, here we deal with SAT and SMT problems where models M are sought such that a given cost function f(M) is minimized.

For this purpose, we introduce a variant of SMT where the theory T becomes progressively stronger, and prove it correct using the Abstract DPLL Modulo Theories framework. We discuss two different examples of applications of this SMT variant: weighted Max-SAT and weighted Max-SMT. We show how, with relatively little effort, one can obtain a competitive system that, in the case of weighted Max-SMT in the theory of Difference Logic, can even handle well-known hard radio frequency assignment problems without any tailored heuristics. These results seem to indicate that Max-SAT/SMT techniques can already be used for realistic applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ARMS02]
    Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: PBS: A backtrack-search pseudo-boolean solver and optimizer. In: SAT 2002. LNCS, pp. 346–353. Springer, Heidelberg (2002)Google Scholar
  2. [BdMS05]
    Barrett, C., de Moura, L., Stump, A.: SMT-COMP: Satisfiability Modulo Theories Competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 20–23. Springer, Heidelberg (2005), http://www.csl.sri.com/users/demoura/smt-comp/ CrossRefGoogle Scholar
  3. [CdGL+99]
    Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assignment. Constraints 4(1), 79–89 (1999)zbMATHCrossRefGoogle Scholar
  4. [CMSM04]
    Colton, S., Meier, A., Sorge, V., McCasland, R.: Automatic generation of classification theorems for finite algebras. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 400–414. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. [dGHZL05]
    de Givry, S., Heras, F., Zytnicki, M., Larrosa, J.: Existential arc consistency: Getting closer to full arc consistency in weighted CSPs. In: IJCAI 2005, pp. 84–89 (2005)Google Scholar
  6. [dGLMS03]
    de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-sat as weighted csp. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. [DLL62]
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Comm. of the ACM 5(7), 394–397 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [DP60]
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [ES06]
    Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)zbMATHGoogle Scholar
  10. [GHN+04]
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. [LH05]
    Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency in weighted CSPs. In: IJCAI 2005, pp. 193–198 (2005)Google Scholar
  12. [LMP05]
    Li, C., Manyà, F., Planes, J.: Solving Over-Constrained Problems with SAT. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 403–414. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. [MMZ+01]
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC 2001 (2001)Google Scholar
  14. [NO05]
    Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. [NOT05]
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and Abstract DPLL Modulo Theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 36–50. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. [SPSP05]
    Sheini, H., Peintner, B., Sakallah, K., Pollack, M.: On solving soft temporal constraints using SAT techniques. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 607–621. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. [SS06]
    Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-boolean SAT solver. J. Satisfiability, Boolean Modeling and Comp. 2, 165–189 (2006)zbMATHGoogle Scholar
  18. [TR05]
    Tinelli, C., Ranise, S.: SMT-LIB: The Satisfiability Modulo Theories Library (July 2005), http://goedel.cs.uiowa.edu/smtlib/
  19. [XZ05]
    Xing, Z., Zhang, W.: Maxsolver: an efficient exact algorithm for (weighted) maximum satisfiability. Artif. Intell. 164(1-2), 47–80 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Robert Nieuwenhuis
    • 1
  • Albert Oliveras
    • 1
  1. 1.Technical Univ. of CataloniaBarcelona

Personalised recommendations