Advertisement

Abstract

The restart strategy can improve the effectiveness of SAT solvers for satisfiable problems. In 2002, we proposed the so-called random jump strategy, which outperformed the restart strategy in most experiments. One weakness shared by both the restart strategy and the random jump strategy is the ineffectiveness for unsatisfiable problems: A job which can be finished by a SAT solver in one day cannot not be finished in a couple of days if either strategy is used by the same SAT solver. In this paper, we propose a simple and effective technique which makes the random jump strategy as effective as the original SAT solvers. The technique works as follows: When we jump from the current position to another position, we remember the skipped search space in a simple data structure called “guiding path”. If the current search runs out of search space before running out of the allotted time, the search can be recharged with one of the saved guiding paths and continues. Because the overhead of saving and loading guiding paths is very small, the SAT solvers is as effective as before for unsatisfiable problems when using the proposed technique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baptista, L., Margues-Silva, J.P.: Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Baptista, L., Lynce, I., Marques-Silva, J.P.: Complete Search Restart Strategies for Satisfiability. In: IJCAI 2001 Workshop on Stochastic Search Algorithms (IJCAI-SSA) (August 2001)Google Scholar
  3. 3.
    Bayardo, R., Schrag, R.: Using CSP look-back techniques to solve exceptionally hard SAT instances. In: Proceedings of CP 1996 (1996)Google Scholar
  4. 4.
    Bennett, F.E., Du, B., Zhang, H.: Conjugate orthogonal diagonal latin squares with missing subsquares. In: Wallis, W. (ed.) Designs 2002: Further Computational and Constructive Design Theory, ch. 2, Kluwer Academic Publishers, Boston (2003)Google Scholar
  5. 5.
    Bennett, F.E., Zhang, H.: Latin squares with self-orthogonal conjugates. Discrete Mathematics 284, 45–55 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bohm, M., Speckenmeyer, E.: A fast parallel SAT-solver – Efficient Workload Balancing (1994), URL: http://citeseer.ist.psu.edu/51782.html
  7. 7.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the Association for Computing Machinery 5(7), 394–397 (1962)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Feldman, Y., Dershowitz, N., Hanna, Z.: Parallel Multithreaded Satisfiability Solver: Design and Implementation. Electronic Notes in Theoretical Computer Science 128, 75–90 (2005)CrossRefGoogle Scholar
  10. 10.
    Lynce, I., Baptista, L., Marques-Silva, J.P.: Stochastic Systematic Search Algorithms for Satisfiability. In: LICS Workshop on Theory and Applications of Satisfiability Testing (LICS-SAT) (June 2001)Google Scholar
  11. 11.
    Gomes, C.P., Selman, B., Crato, C.: Heavy-tailed Distributions in Combinatorial Search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Xu, Y., Zhang, H.: Frame self-orthogonal Mendelsohn triple systems. Acta Mathematica Sinica 20(5), 913–924 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Zhang, H.: Specifying Latin squares in propositional logic. In: Veroff, R. (ed.) Automated Reasoning and Its Applications, Essays in honor of Larry Wos, ch. 6, MIT Press, Cambridge (1997)Google Scholar
  15. 15.
    Zhang, H.: SATO: An efficient propositional prover. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 308–312. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Zhang, H.: A random jump strategy for combinatorial search. In: Proc. of Sixth International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, FL (2002)Google Scholar
  17. 17.
    Zhang, H.: A complete random jump strategy with guiding paths (full version) (2006), http://www.cs.uiowa.edu/~hzhang/crandomjump.pdf
  18. 18.
    Zhang, H., Bonacina, M.P., Hsiang, H.: PSATO: a distributed propositional prover and its application to quasigroup problems. Journal of Symbolic Computation 21, 543–560 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zhang, H., Bennett, F.E.: Existence of some (3,2,1)–HCOLS and (3,2,1)–HCOLS. J. of Combinatoric Mathematics and Combinatoric Computing 22, 13–22 (1996)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Zhang, H., Stickel, M.: Implementing the Davis-Putnam method. J. of Automated Reasoning 24, 277–296 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhu, L., Zhang, H.: Completing the spectrum of r-orthogonal latin squares. Discrete Mathematics 258 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hantao Zhang
    • 1
  1. 1.Department of Computer ScienceUniversity of IowaIowa CityU.S.A.

Personalised recommendations