The Effective Radius Model for Multi-hop Wireless Networks

  • Liran Ma
  • Weidong Jiang
  • Kai Xing
  • E. K. Park
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4138)

Abstract

In this paper, we introduce a novel model, termed as Effective Radius (ER), to calculate the expected number of t-hop neighbors in a multi-hop wireless network with a uniform node distribution on the average. This ER model is an analytical tool that recursively computes a t-hop effective radius for t=2, 3, ⋯. The total number of nodes covered by the disk with a t-hop effective radius equals to the expected number of nodes reachable through at most t hops in the original physical topology. We conduct extensive simulation studies to validate our model and the results demonstrate that the ER model is accurate and can be adaptive to different deployment scenarios. Our findings have interesting applications to the design and evaluation of multi-hop wireless networks.

Keywords

Multi-hop Wireless networks Effective Radius model t-hop neighborhood 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spencer, J.: The Strange Logic of Random Graphs. In: Algorithms and Combinatorics, vol. 22. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Kleinrock, L., Silvester, J.A.: Optimum transmission radii in packet radio networks or why six is a magic number. In: National Telecommunications Conference, Birmingham, Alabama, pp. 4.3.1–4.3.5. IEEE, Los Alamitos (1978)Google Scholar
  3. 3.
    Bettstetter, C.: On the Minimum Node Degree and Connectivity of a Wireless Multihop Network. In: The ACM Symposium on Mobile Adhoc Networking and Computing (MOBIHOC 2002), Lausanne, Switzerland, June 9–11, pp. 80–91 (2002)Google Scholar
  4. 4.
    Xue, F., Kumar, P.: The number of neighbors needed for connectivity of wireless networks. Wireless Networks 10(2), 169–181 (2004)CrossRefGoogle Scholar
  5. 5.
    Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications, p. 90. IEEE Computer Society Press, Los Alamitos (1999)CrossRefGoogle Scholar
  6. 6.
    Johnson, D.B., Maltz, D.A., Broch, J.: DSR: The dynamic source routing protocol for multihop wireless ad hoc networks. In: Perkins, C. (ed.) Ad Hoc Networking, ch. 5, pp. 139–172. Addison-Wesley, Reading (2001), [Online]. Available: http://monarch.cs.rice.edu/monarch-papers/dsr-chapter00.ps Google Scholar
  7. 7.
    Li, X.-Y., Wan, P.-J., Wang, Y., Yi, C.-W.: Fault tolerant deployment and topology control in wireless networks. In: MobiHoc 2003: Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing, pp. 117–128. ACM Press, New York (2003)CrossRefGoogle Scholar
  8. 8.
    Schurgers, C., Tsiatsis, V., Ganeriwal, S., Srivastava, M.: Topology Management for Sensor Networks: Exploiting Latency and Density. In: The ACM Symposium on Mobile Adhoc Networking and Computing (MOBIHOC 2002), Lausanne, Switzerland, June 9–11, pp. 135–145 (2002)Google Scholar
  9. 9.
    Pan, J., Hou, Y.T., Cai, L., Shi, Y., Shen, S.X.: Topology control for wireless sensor networks. In: MobiCom 2003: Proceedings of the 9th annual international conference on Mobile computing and networking, pp. 286–299. ACM Press, New York (2003)CrossRefGoogle Scholar
  10. 10.
    Nasipuri, A., Castaneda, R., Das, S.R.: Performance of multipath routing for on-demand protocols in mobile ad hoc networks. Mob. Netw. Appl. 6(4), 339–349 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Lou, W., Liu, W., Fang, Y.: Spread: Enhancing data confidentiality in mobile ad hoc networks. In: INFOCOM, pp. 2404–2413 (2004)Google Scholar
  12. 12.
    Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, p. 197. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Zhu, S., Setia, S., Jajodia, S., Ning, P.: An interleaved hop-by-hop authentication scheme for filtering of injected false data in sensor networks. In: IEEE Symposium on Security and Privacy, pp. 259–271 (2004)Google Scholar
  14. 14.
    Yang, H., Ye, F., Yuan, Y., Lu, S., Arbaugh, W.: Toward resilient security in wireless sensor networks. In: MobiHoc 2005: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing, pp. 34–45. ACM Press, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Liran Ma
    • 1
  • Weidong Jiang
    • 2
  • Kai Xing
    • 1
  • E. K. Park
    • 3
  1. 1.Department of Computer ScienceThe George Washington UniversityWashington D.C.U.S.A
  2. 2.Institute of Electronic Science and EngineeringThe National University of Defense TechnologyP.R. China
  3. 3.Computer Science and Electrical Engineering Department, School of Computing and EngineeringUniversity of Missouri at Kansas CityKansas CityU.S.A

Personalised recommendations