On Broadcast Authentication in Wireless Sensor Networks

  • Kui Ren
  • Kai Zeng
  • Wenjing Lou
  • Patrick J. Moran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4138)

Abstract

Broadcast authentication is a critical security service in wireless sensor networks (WSNs), since it enables users to broadcast the WSN in an authenticated way. Symmetric key based schemes such as μTESLA and multilevel μTESLA have been proposed to provide such services for WSNs; however, these schemes all suffer from serious DoS attacks because of the delayed message authentication. This paper presents several effective public key based schemes to achieve immediate broadcast authentication and thus overcome the vulnerability presented in the μTESLA-like schemes. Several cryptographic building blocks, including Merkle hash tree and ID-based signature scheme, are adopted to minimize the scheme overhead regarding the costs in both computation and communication. A quantitative analysis on energy consumption of the proposed schemes are given in detail. We believe that this paper can serve as the start point towards fully solving the important multisender broadcast authentication problem in WSNs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Survey on Sensor Networks. IEEE Communications Magazine. IEEE Communications Magazine 40(8), 102–116 (2002)CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I., Kasimoglu, I.: Wireless sensor and actor networks: research challenges. Ad Hoc Networks 2(4), 351–367 (2004)CrossRefGoogle Scholar
  3. 3.
    Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, D.: SPINS: Security protocols for sensor networks. In: Proc. of MobiCom 2001 (July 2001)Google Scholar
  4. 4.
    Liu, D., Ning, P.: Efficient distribution of key chain commitments for broadcast authentication in distributed sensor networks. In: Proc. of NDSS 2003, pp. 263–276 (2003)Google Scholar
  5. 5.
    Liu, D., Ning, P.: Multi-level mTESLA: Broadcast authentication for distributed sensor networks. ACM TECS 3(4) (2004)Google Scholar
  6. 6.
    Liu, D., Ning, P., Zhu, S., Jajodia, S.: Practical Broadcast Authentication in Sensor Networks. In: Proc. of MobiQuitous 2005 (July 2005)Google Scholar
  7. 7.
    Hu, Y., Perrig, A., Johnson, D.: Packet Leashes: A Defense against Wormhole Attacks in Wireless Ad Hoc Networks. In: Proceedings of INFOCOM (2003)Google Scholar
  8. 8.
    Ren, K., Lou, W., Zhang, Y.: LEDS: Providing Location-aware End-to-end Data Security in Wireless Sensor Networks. In: Proc. of IEEE INFOCOM (2006)Google Scholar
  9. 9.
    Wander, A., Gura, N., Eberle, H., Gupta, V., Shantz, S.: Energy Analysis of Public-Key Cryptography on Small Wireless Devices. In: IEEE PerCom (March 2005)Google Scholar
  10. 10.
    Du, W., Wang, R., Ning, P.: An Efficient Scheme for Authenticating Public Keys in Sensor Networks. In: Proceedings of MobiHoc, pp. 58–67 (2005)Google Scholar
  11. 11.
    Crossbow Technology Inc. (2004), http://www.xbow.com/
  12. 12.
    Aydos, M., Yanik, T., Koc, C.K.: An high-speed ECC-based wireless authentication protocol on an ARM microprocessor. In: Proc. of ACSAC (2000)Google Scholar
  13. 13.
    Merkle, R.: Protocols for public key cryptosystems. In: Proceedings of the IEEE Symposium on Research in Security and Privacy (April 1980)Google Scholar
  14. 14.
    Zhang, Y., Liu, W., Lou, W., Fang, Y.: Location based security mechanisms in wireless sensor networks. IEEE JSAC, Special Issue on Security in Wireless Ad Hoc Networks 24(2), 247–260 (2006)Google Scholar
  15. 15.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  16. 16.
    NIST, Digital hash standard, Federal Information Processing Standards Publication 180-1 (April 1995)Google Scholar
  17. 17.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    National Institure of Standards and Technology: Proposed Federal Information Processing Standard for Digital Signature Standard (DSS). Federal Register 56(169), 42980–42982 (1991)Google Scholar
  19. 19.
    Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Intel PXA255 Processor Electrical, Mechanical, and Thermal Specification, http://www.intel.com/design/pca/applicationsprocessors/manuals/278780.h
  21. 21.
    Bertoni, G., Chen, L., Fragneto, P., Harrison, K., Pelosi1, G.: Computing tate pairing on smartcards, White Paper, STMicroelectronics (2005), Available: http://www.st.com/stonline/products/families/smartcard/astibe.htm
  22. 22.
    Lorincz, K., et al.: Sensor Networks for Emergency Response: Challenges and Opportunities. In: IEEE Pervasive Computing, Special Issue on Pervasive Computing for First Response (2004)Google Scholar
  23. 23.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kui Ren
    • 1
  • Kai Zeng
    • 1
  • Wenjing Lou
    • 1
  • Patrick J. Moran
    • 2
  1. 1.Worcester Polytechnic InstituteWorcesterUSA
  2. 2.AirSprite Technologies, Inc.MarlboroughUSA

Personalised recommendations