A Trust-Based Routing Framework in Energy-Constrained Wireless Sensor Networks

  • Cheng Weifang
  • Liao Xiangke
  • Shen Changxiang
  • Li Shanshan
  • Peng Shaoliang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4138)


As wireless sensor networks continue to grow, so does the need for effective security mechanisms. The classical mechanisms, namely authentication and encryption, can prevent some outsider attacks; however, these mechanisms are inefficient in detecting selective forwarding attacks on compromised nodes. On the basis of these observations, we build a trust model to evaluate nodes behavior. Based on the trust model, a routing framework, TRUSTEE, is further proposed for secure routing. TRUSTEE provides a flexible and feasible approach to evaluate routes’ quality and chooses route that best meets the security requirements. Keeping into mind the critical resource constraint nature of sensor network, we do not adopt the energy-consuming monitoring and trust recommendations mechanisms. Simulation and analysis verify TRUSTEE’s performance, it not only minimizes resource consumption but also can prevent most outsider attacks, defend selective forwarding attacks and thus significantly increase the network throughput.


Sensor Network Sensor Node Wireless Sensor Network Medium Access Control Trust Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shi, E., Perrig, A.: Designing Secure Sensor Networks. Wireless Networks Journal (December 2004)Google Scholar
  2. 2.
    Karlof, C., Wagner, D.: Secure Routing in Sensor Networks: Attacks and Countermeasures. Elsevier AdHoc Networks journal (May 2003)Google Scholar
  3. 3.
    Perrig, A., Stankovic, J., Wagner, D.: Security in Wireless Sensor Networks. Communications of the ACM (2004)Google Scholar
  4. 4.
    Newsome, J., Shi, E., Song, D., Perrig, A.: The Sybil Attack in Sensor Networks: Analysis and Defenses. In: Proceedings of IPTPS (March 2002)Google Scholar
  5. 5.
    Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, D.: SPINS: Security Protocols for Sensor Networks. Wireless Networks Journal (September 2002)Google Scholar
  6. 6.
    Karlof, C., Sastry, N., Wagner, D.: TinySec: Link Layer Encryption for Tiny Devices. In: Proceedings of ACM SenSys (2004)Google Scholar
  7. 7.
    Deng, J., Han, R., Mishra, S.: The Performance Evaluation of Intrusion-Tolerant Routing in Wireless Sensor Networks. In: The Proceedings of IPSN (April 2003)Google Scholar
  8. 8.
    Watro, R., Kong, D., Cuti, S.F., Gardiner, C., Lynn, C., Kruus, P.: TinyPK: Securing Sensor Networks with Public Key Technology. In: Second workshop on Security in Sensor and Ad-hoc Networks (2004)Google Scholar
  9. 9.
    Eschenauer, L., Gligor, V.D.: A Key Management Scheme for Distributed Sensor Networks. In: Proceedings of ACM CCS (November 2002)Google Scholar
  10. 10.
    Chan, H., Perrig, A., Song, D.: Random Key Predistribution Schemes for Sensor Networks. In: Proceedings of IEEE Symposium on Security and Privacy (2003)Google Scholar
  11. 11.
    Liu, D., Ning, P.: Establishing Pairwise Keys in Distributed Sensor Networks. In: Proceedings of ACM CCS (October 2003)Google Scholar
  12. 12.
    Tanachaiwiwat, S., Dave, P., Bhindwale, R., Helmy, A.: Location-centric Isolation of Misbehavior and Trust Routing in Energy-constrained Sensor Networks. In: IEEE Workshop on Energy-Efficient Wireless Communications and Networks (EWCN 2004), in conjunction with IEEE IPCCC (April 2004)Google Scholar
  13. 13.
    Ganeriwal, S., Srivastava, M.: Reputation-based Framework for High Integrity Sensor Networks. In: Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks (2004)Google Scholar
  14. 14.
    AbuGhazaleh, N., Don Kang, K., Liu, K.: Towards Resilient Geographic Routing in WSNs. In: Proceedings of the 1st ACM international workshop on Quality of service & security in wireless and mobile networks, Montreal, Quebec, Canada, vol. 10, pp. 71–78 (2005)Google Scholar
  15. 15.
    Yan, Z., Zhang, P., Virtanen, T.: Trust Evaluation Based Security Solution in Ad Hoc Networks. In: Proceedings of the Seventh Nordic Workshop on Secure IT Systems (2003)Google Scholar
  16. 16.
    Ren, K., Li, T., Wan, Z., Bao, F., Deng, R.H., Kim, K.: Highly Reliable Trust Establishment Scheme in Ad Hoc Networks. Computer Networks: The International Journal of Computer and Telecommunications Networking 45, 687–699 (2004)zbMATHGoogle Scholar
  17. 17.
    Liu, Z.Y., Joy, A.W., Thompson, R.A., Thompson, R.A.: A dynamic Trust Model for Mobile Ad Hoc Networks. In: The 10th IEEE Intl.Workshop on Future Trends of Distributed Computing Systems (FTDCS 2004), May 2004, pp. 80–85 (2004)Google Scholar
  18. 18.
    Rebahi, Y., Vicente, E., Mujica, V., Sisalem, D.: A Reputation-Based Trust Mechanism for Ad Hoc Networks. In: Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005), June 27-30 (2005)Google Scholar
  19. 19.
    Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating Routing Misbehavior in Mobile Ad Hoc Networks. ACM MobiCOM (August 2000)Google Scholar
  20. 20.
    Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocol for Wireless Sensor Networks. In: Proc 21st Int’1 Annual Joint Conf IEEE Computer and Communication Societies(INFOCOM 2002), New York, (June 2002)Google Scholar
  21. 21.
    Van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol Wireless Sensor Networks. In: Proc 1st Int’1 Conf on Embedded Networked Sensor Systems (SenSys), Los Angeles, CA, November 5-7 (2003)Google Scholar
  22. 22.
    IEEE Computer Society LAN MAN Standards Committee. IEEE Std 802.11-1999, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification (1999)Google Scholar
  23. 23.
    Shah, R.C., Rabaey, J.: Energy Aware Routing for Low Energy Ad Hoc Sensor Networks. In: IEEE Wireless Communications and Networking Conference (WCNC), Orlando, FL, March 17-21 (2002)Google Scholar
  24. 24.
    Yu, Y., Govindan, R., Estrin, D.: Geographical and Energy Aware Routing: A recursive Data Dissemination Protocol for Wireless Sensor Networks. Technical Report UCLA/CSD-TR-01-0023, UCLA, Department of Computer Science (May 2001)Google Scholar
  25. 25.
    Bell, D., LaPadula, L.: Secure Computer Systems: Mathematical Foundations and Model, Technical Report MTR 2547 v2, MITRE (November 1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Cheng Weifang
    • 1
  • Liao Xiangke
    • 1
  • Shen Changxiang
    • 2
  • Li Shanshan
    • 1
  • Peng Shaoliang
    • 1
  1. 1.School of Computer ScienceNational University of Defense TechnologyChangshaChina
  2. 2.First LabComputing Technique Institute of the NavyBeijingChina

Personalised recommendations