Ring Signature Based on ElGamal Signature

  • Jian Ren
  • Lein Harn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4138)

Abstract

Ring signature was first introduced by Rivest, Shamir and Tanman in 2001. In a ring signature, instead of revealing the actual identity of the message signer, it specifies a set of possible signers. The verifier can be convinced that the signature was indeed generated by one of the ring members, however, he is unable to tell which member actually produced the signature. Ring signature provides an elegant way to leak authoritative secrets in an anonymous way, and to implement designated-verifier signature schemes which can authenticate emails without undesired side effects. In this paper, we first propose a ring signature scheme based on ElGamal signature scheme. Comparing to ring signature based on RSA algorithm, the proposed scheme has three advantages. First, all ring members can use the same prime number p and operate in the same domain. Second, the proposed ring signature is inherently a convertible ring signature and enables the actual message signer to prove to a verifier that only he is capable of generating the ring signature. Third, multi-signer ring signature schemes can be generated from ElGamal signature schemes to increase the level of confidence or enforce cross organizational joint message signing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  3. 3.
    Herranz, J., Saez, G.: Forking lemmas in the ring signatures’ scenario. Technical Report 067, International Association for Cryptologic Research (2003), http://eprint.iacr.org/2003/067.ps
  4. 4.
    Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n Signatures from a Variety of Keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Kim, S.J., Park, S.J., Won, D.H.: Convertible group signature. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 311–321. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Lee, K.-C., Wen, H.-A., Hwang, T.: Convertible ring signature. IEE Proceedings - Communications 152(4), 411–414 (2005)CrossRefGoogle Scholar
  8. 8.
    Boyar, J., Chaum, D., Damgård, I.B., Pedersen, T.P.: Convertible Undeniable Signatures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–205. Springer, Heidelberg (1991)Google Scholar
  9. 9.
    Bangerter, E., Camenisch, J.L., Maurer, U.M.: Efficient Proofs of Knowledge of Discrete Logarithms and Representations in Groups with Hidden Order. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 154–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Bresson, E., Stern, J., Szydlo, M.: Threshold Ring Signatures and Applications to Ad-hoc Groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    ElGamal, T.A.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Harn, L.: Group-oriented (t,n) threshold digital signature scheme and digital multisignature. IEE Proc.-Comput. Digit. Tech. 141(5), 307–313 (1994)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jian Ren
    • 1
  • Lein Harn
    • 2
  1. 1.Michigan State UniversityEast LandingUSA
  2. 2.University of Missouri-Kansas CityUSA

Personalised recommendations