A Genetic Algorithm on Multi-sensor Networks Lifetime Optimization

  • Yantao Pan
  • Wei Peng
  • Xicheng Lu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4138)


Since data communications consume the most energy of sensor networks, it is reasonable to take efficient traffic balancing to prolong the lifetime. In addition, the traffic aggregation is a main characteristic that distinguish sensor networks from others e.g. Internet and MANET. Therefore, an optimal traffic distribution will maximize the network lifetime. Furthermore, sensor networks are generally developed for special applications. If different sensor networks deployed in the same region can cooperate with each other in data transmission, their lifetimes can be improved remarkably. In this paper, we propose a genetic algorithm to achieve optimal traffic distribution on multi-sensor networks and show its efficiency by experiments.


Sensor Networks Lifetime Optimization Genetic Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhardwaj, M., Chandrakasan, A., Garnett, T.: Upper Bounds on the Lifetime of Sensor Networks. In: IEEE International Conference on Communications, Helsinki (June 2001)Google Scholar
  2. 2.
    Bhardwaj, M., Chandrakasan, A.: Bounding the Lifetime of Sensor Networks Via Optimal Role Assignments. In: IEEE INFOCOM (2002)Google Scholar
  3. 3.
    Duarte-Melo, E.J., Liu, M., Misra, A.: A Modeling Framework for Computing Lifetime and Information Capacity in Wireless Sensor Networks. Modeling and Optimization in Mobile. In: Ad Hoc and Wireless Networks, Cambridge, UK (March 2004)Google Scholar
  4. 4.
    Rai, V., Mahapatra, R.N.: Lifetime Modeling of a Sensor Network. In: Design, Automation and Test in Europe, Munich, Germany (March 2005)Google Scholar
  5. 5.
    Chang, J.-H., Tassiulas, L.: Routing for Maximum System Lifetime in Wireless Ad-hoc Networks. In: 37th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL (September 1999)Google Scholar
  6. 6.
    Chang, J.-H., Tassiulas, L.: Energy conserving routing in wireless ad-hoc networks. In: IEEE INFOCOM 2000 (2000)Google Scholar
  7. 7.
    Sankar, Z.L.: Maximum Lifetime Routing in Wireless Ad-hoc Networks. In: INFOCOM 2004 (2004)Google Scholar
  8. 8.
    Dasgupta, K., Kalpakis, K., Namjoshi, P.: Efficient Algorithms for Maximum Lifetime Data Gathering and Aggregation in Wireless Sensor Networks. Computer Networks 42 (2003)Google Scholar
  9. 9.
    Madan, R., Lall, S.: Distributed Algorithms for Maximum Lifetime Routing in Wireless Sensor Networks. In: Global Telecommunications Conference, November 2004, vol. 2, IEEE, Los Alamitos (2004)Google Scholar
  10. 10.
    Xue, Y., Cui, Y., Nahrstedt, K.: Maximizing Lifetime for Data Aggregation in Wireless Sensor Networks,
  11. 11.
    Estrin, D., Srivastava, M.: Wireless Sensor Networks (Tutorial). In: Proceedings of ACM MobiCom 2002, Atlanta, Georgia, USA (2002)Google Scholar
  12. 12.
  13. 13.
    Garcia-Luna-Aceves, J.J., Fullmer, C.L., Madruga, E.: Wireless mobile internetworking (Manuscript)Google Scholar
  14. 14.
    Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless Sensor Networks for Habitat Monitoring. In: ACM International Workshop on Wireless Sensor Networks and Applications (2002)Google Scholar
  15. 15.
    Winter, G., Periaux, J., Galan, M.: Genetic Algorithms in Engineering and Computer Science. John Wiley & Son Ltd., Chichester (1995)Google Scholar
  16. 16.
    Darrell Whitley, L., Vose, M.D.: Foundations of Genetic Algorithms, vol. 3. Morgan Kaufmann Publishers Inc., San Francisco (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yantao Pan
    • 1
  • Wei Peng
    • 1
  • Xicheng Lu
    • 1
  1. 1.School of ComputerNational University of Defense TechnologyChangshaP.R. China

Personalised recommendations