Throughput Capacity of UWB Ad-Hoc Networks with Infrastructure Support

  • Fan Zhang
  • Xiaoyun Kang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4138)

Abstract

To provide scalable capacity of wireless ad-hoc networks, we employ a joint approach of both Ultra-Wide-Band (UWB) radio and hybrid architecture (ad-hoc network with infrastructure support). By using the AP(access point)-assisted percolation model, and utilizing sufficiently wide bandwidth under per-link power constraint, we find the asymptotic per-node throughput capacity of a UWB hybrid network in a unit disk area, as a function of the number of randomly distributed nodes, the number of randomly distributed AP, and the path loss exponent. This result shows an asymptotically significant factor of improvement in capacity by deploying AP, compared to the recent result for UWB pure ad-hoc network. An extension of the result in the more general D-dimensional space is also obtained.

Keywords

Wireless Networks Ad-Hoc Networks Ultra-Wide-Band (UWB) Throughput Capacity Information Theory Scalability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on Information Theory 46, 388–404 (2000)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Toumpis, S., Goldsmith, A.J.: Capacity Regions for Wireless Ad Hoc Networks. IEEE Transactions on Wireless Communications 2, 736–748 (2003)CrossRefGoogle Scholar
  3. 3.
    Xie, L.L., Kumar, P.R.: A Network Information Theory for Wireless Communication: Scaling Laws and Optimal Operation. IEEE Transactions on Information Theory 50, 748–767 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Franceschetti, M., Dousse, O., Tse, D.N.C., et al.: Closing the gap in the capacity of random wireless networks. In: Proc. IEEE ISIT, p. 439 (2004)Google Scholar
  5. 5.
    Liu, B., Liu, Z., Towsley, D.: On the capacity of hybrid wireless networks. In: Proc. IEEE INFOCOM, pp. 1543–1552 (2003)Google Scholar
  6. 6.
    Kozat, U.C., Tassiulas, L.: Throughput capacity of random ad hoc networks with infrastructure support. In: Proc. ACM MOBICOM, pp. 55–65 (2003)Google Scholar
  7. 7.
    Toumpis, S.: Capacity bounds for three types of wireless networks: Asymmetric, cluster and hybrid. In: Proc. ACM MOBIHOC, pp. 133–144 (2004)Google Scholar
  8. 8.
    Negi, R., Rajeswaran, A.: Capacity of power constrained ad-hoc networks. In: Proc. IEEE INFOCOM, pp. 453–463 (2004)Google Scholar
  9. 9.
    Zhang, H., Zhou, J.C.: Capacity of Wireless Ad-hoc Networks under Ultra Wide Band with Power Constraint. In: Proc. IEEE INFOCOM, pp. 123–133 (2005)Google Scholar
  10. 10.
    Zemlianov, A., Veciana, G.: Capacity of Ad Hoc Wireless Networks with Infrastructure Support. IEEE Journal on Selected Areas in Communications 23, 657–667 (2005)CrossRefGoogle Scholar
  11. 11.
    Glauche, I., Krause, W., Sollacher, R., Greiner, M.: Continuum percolation of wireless ad hoc communication networks. Physica A 325, 577–600 (2003)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Franceschetti, M., Dousse, O., Tse, D., Thiran, P.: On the throughput capacity of random wireless networks. IEEE Transactions on Information Theory (2004)Google Scholar
  13. 13.
    Dousse, O., Franceschetti, M., Thiran, P.: Information theoretic bounds on the throughput scaling of wireless relay networks. In: Proc. IEEE INFOCOM, pp. 2670–2678 (2005)Google Scholar
  14. 14.
    Gupta, P., Kumar, P.R.: Internets in the sky: The capacity of three dimensional wireless networks. Communications in Information and Systems, 33–49 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fan Zhang
    • 1
  • Xiaoyun Kang
    • 1
  1. 1.Dept. of Electronics and Information EngineeringHuazhong University of Science and TechnologyWuhanP.R. China

Personalised recommendations