A Logical Characterization of Forward and Backward Chaining in the Inverse Method

  • Kaustuv Chaudhuri
  • Frank Pfenning
  • Greg Price
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4130)


The inverse method is a generalization of resolution that can be applied to non-classical logics. We have recently shown how Andreoli’s focusing strategy can be adapted for the inverse method in linear logic. In this paper we introduce the notion of focusing bias for atoms and show that it gives rise to forward and backward chaining, generalizing both hyperresolution (forward) and SLD resolution (backward) on the Horn fragment. A key feature of our characterization is the structural, rather than purely operational, explanation for forward and backward chaining. A search procedure like the inverse method is thus able to perform both operations as appropriate, even simultaneously. We also present experimental results and an evaluation of the practical benefits of biased atoms for a number of examples from different problem domains.


Inverse Method Linear Logic Horn Clause Sequent Calculus Time Iters 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2(3), 297–347 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Andreoli, J.-M.: Focussing and proof construction. Annals of Pure and Applied Logic 107, 131–163 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical framework I & II. Technical Report CMU-CS-02-101 and 102, Department of Computer Science, Carnegie Mellon University, 2002. Revised (May 2003)Google Scholar
  4. 4.
    Chaudhuri, K., Pfenning, F.: A focusing inverse method theorem prover for first-order linear logic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 69–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 179–272. MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  7. 7.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210 (1935): Szabo, M.E.: The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1969)Google Scholar
  8. 8.
    Girard, J.-Y.: Locus solum: from the rules of logic to the logic of rules. Mathematical Structures in Computer Science 11, 301–506 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Information and Computation 110(2), 327–365 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jacob, M.: Howe. Proof Search Issues in Some Non-Classical Logics. PhD thesis, University of St. Andrews (September 1998)Google Scholar
  11. 11.
    Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artificial Intelligence 2, 227–260 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Annals of Pure and Applied Logic 56, 239–311 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mantel, H., Otten, J.: LinTAP: A tableau prover for linear logic. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 217–231. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Miller, D.: A multiple-conclusion meta-logic. In: Abramsky, S. (ed.) Ninth Annual Symposium on Logic in Computer Science, Paris, France, July 1994, pp. 272–281. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  15. 15.
    Sahlin, D., Franzén, T., Haridi, S.: An intuitionistic predicate logic theorem prover. Journal of Logic and Computation 2(5), 619–656 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tammet, T.: Resolution, inverse method and the sequent calculus. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) KGC 1997. LNCS, vol. 1289, pp. 65–83. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Tamura, N.: Llprover. At:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kaustuv Chaudhuri
    • 1
  • Frank Pfenning
    • 1
  • Greg Price
    • 1
  1. 1.Department of Computer ScienceCarnegie Mellon University 

Personalised recommendations