Importing HOL into Isabelle/HOL

  • Steven Obua
  • Sebastian Skalberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4130)

Abstract

We developed an importer from both HOL 4 and HOL-light into Isabelle/HOL. The importer works by replaying proofs within Isabelle/HOL that have been recorded in HOL 4 or HOL-light and is therefore completely safe. Concepts in the source HOL system, that is types and constants, can be mapped to concepts in Isabelle/HOL; this facilitates a true integration of imported theorems and theorems that are already available in Isabelle/HOL. The importer is part of the standard Isabelle distribution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Wright, J., Harrison, J., Grundy, J. (eds.): TPHOLs 1996. LNCS, vol. 1125. Springer, Heidelberg (1996)MATHGoogle Scholar
  2. 2.
    Schürmann, C., Stehr, M.: An Executable Formalization of the HOL/Nuprl Connection in the Metalogical Framework Twelf. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Naumov, P., Stehr, M., Meseguer, J.: The HOL/NuPRL Proof Translator: A Practical Approach to Formal Interoperability. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Naumov, P.: Importing Isabelle Formal Mathematics into NuPRL. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Denney, E.: A Prototype Proof Translator from HOL to Coq. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Wiedijk, F.: Encoding the HOL Light logic in Coq. Unpublished notesGoogle Scholar
  7. 7.
    McLaughlin, S.: An interpretation of Isabelle/HOL in HOL Light (submitted)Google Scholar
  8. 8.
    Berghofer, S., Nipkow, T.: Proof terms for simply typed higher order logic. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002)MATHGoogle Scholar
  10. 10.
    The HOL System Description, http://hol.sourceforge.net
  11. 11.
  12. 12.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Steven Obua
    • 1
  • Sebastian Skalberg
    • 1
  1. 1.Technische Universität MünchenGarchingGermany

Personalised recommendations