Roles of Math Search in Mathematics

  • Abdou Youssef
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4108)

Abstract

Math-aware fine-grain search is expected to be widely available. A key question is what roles it can play in mathematics. It will be argued that, besides finding information, math search can help advance and manage mathematical knowledge. This paper will present the short-term goals and state of the art of math-aware fine-grain search. Afterwards, it will focus on how math search can help advance and manage mathematical knowledge, and discuss what needs to be done to fulfill those roles, emphasizing two key components. The first is similarity search, and how it applies to (1) discovering and drawing upon connections between different fields, and (2) proof development. The second is math metadata, which math search will surely encourage and benefit from, and which will be pivotal to mathematical knowledge management.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The ActiveMath Project, http://www.mathweb.org/activemath/
  2. 2.
    MathSciNe. American Mathematical Society (AMS), http://www.ams.org/mathscinet
  3. 3.
    Asperti, A., et al.: Mathematical Knowledge Management in HELM [Italy]. In: First International Workshop on Mathematical Knowledge Management, Schloss Hagenberg, Austria, September 24-26 (2001)Google Scholar
  4. 4.
    Benzmüller, C., et al.: Ω: Towards a Mathematical Assistant. In: Conference on Automated Deduction (1997)Google Scholar
  5. 5.
    Buchberger, B.: Mathematical Knowledge Management Using Theorema. In: First International Workshop on Mathematical Knowledge Management, Schloss Hagenberg, Austria, September 24-26 (2001)Google Scholar
  6. 6.
    Bundy, A.: The Use of Explicit Plans to Guide Inductive Proofs. In: Lusk, E.‘., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  7. 7.
    Bundy, A.: Proof Planning. In: Drabble, B. (ed.) Proceedings of the 3rd International Conference on AI Planning Systems, pp. 261–267 (1996)Google Scholar
  8. 8.
    Dixon, L., Fleuriot, J.D.: IsaPlanner: A prototype proof planner in Isabelle. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279–283. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Dixon, L., Jamnik, M., Pollet, M.: Proof planning: Comparing Ωmega, λClam and Isa-Planner. In: Bennett, B. (ed.) ARW 11, University of Leeds, School of Computing, 2004. Held in Association with the AISB 2004 Convention, pp. 50–52 (2004)Google Scholar
  10. 10.
    Einwohner, T.H., Fateman, R.: Searching techniques for integral tables. In: International symposium on Symbolic and algebraic computation, ACM, New York (1995), http://torte.cs.berkeley.edu:8010/tilu Google Scholar
  11. 11.
    Guidi., F.: Searching and Retrieving in Content-based Repositories of Formal Mathematical Knowledge. Ph.D. Thesis in Computer Science, University of Bologna, March 2003. Technical report UBLCS (2003-06)Google Scholar
  12. 12.
    Guidi, F., Schena, I.: A Query Language for a Metadata Framework about Mathematical Resources. In: The 2nd International Conf. Mathematical Knowledge Management, Bertinoro, Italy (February 2003)Google Scholar
  13. 13.
    Hardin, T.: Mathematical Knowledge Management in FOC [France]. In: First International Workshop on Mathematical Knowledge Management, Schloss Hagenberg, Austria, September 24-26 (2001)Google Scholar
  14. 14.
    An Hypertextual Electronic Library of Mathematics, http://helm.cs.unibo.it/
  15. 15.
  16. 16.
    Kohlhase, M.: MBase: Representing Knowledge and Context for the Integration of Mathematical Software Systems. Journal of Symbolic Computation 23(4), 365–402 (2001)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Leake, D.B., Scherle, R.: Towards Context-Based Search Engine Selection. In: IUI 2001, Santa Fe, New Mexico, USA, January 14-17 (2001)Google Scholar
  18. 18.
    Lozier, D.W.: The DLMF Project: A New Initiative in Classical Special Functions. In: International Workshop on Special Functions - Asymptotics, Harmonic Analysis and Mathematical Physics, Hong Kong, June 21-25 (1999)Google Scholar
  19. 19.
    Lozier, D.W., Miller, B.R., Saunders, B.V.: Design of a Digital Mathematical Library for Science, Technology and Education. In: Proceedings of the IEEE Forum on Research and Technology Advances in Digital Libraries; IEEE ADL 1999, Baltimore, Maryland (May 1999)Google Scholar
  20. 20.
  21. 21.
    The OpenMath Standard (1998), http://www.openmath.org/
  22. 22.
    MathML 2.0, a W3C Recommendation (October 2003), http://www.w3.org/Math/
  23. 23.
    MathDi (Mathematics Didactics Database), http://www.emis.de/MATH/DI/
  24. 24.
    Mathematics Metadata, http://www.mathmetadata.org/
  25. 25.
    The MathNet Project, http://www.math-net.de/project/
  26. 26.
    Melis, E., Siekmann, J.: Knowledge-Based Proof Planning. J. Artificial Intelligence (1999)Google Scholar
  27. 27.
    Melis, E., Meier, A.: Proof Planning with Multiple Strategies. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  28. 28.
    Melis, E., et al.: ActiveMath: A Generic and Adaptive Web-Based Learning Environmen. Artifical Intelligence in Education 4(12) (Winter) (2001)Google Scholar
  29. 29.
    Miller, B., Youssef, A.: Technical Aspects of the Digital Library of Mathematical Functions. Annals of Mathematics and Artificial Intelligence 38, 121–136 (2003)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Mathematical Subject Classification. American Mathematical Society (MSC 2000), http://www.ams.org/msc/
  31. 31.
  32. 32.
  33. 33.
    Rudnicki, P., Trybulec, A.: Mathematical Knowledge Management in MIZAR. In: First International Workshop on Mathematical Knowledge Management, Schloss Hagenberg, Austria, September 24-26 (2001)Google Scholar
  34. 34.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw Hill, New York (1993)Google Scholar
  35. 35.
    Saracevic, T.: Relevance: A Review of and a Framework for the Thinking on the Notion. Journal of the American Society of Information Science 26(4), 321–343 (1975)CrossRefGoogle Scholar
  36. 36.
    Theorist Interactive LiveMath, http://www.livemath.com/
  37. 37.
    Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Reading (2006)Google Scholar
  38. 38.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addison-Wesley, Reading (1999)Google Scholar
  39. 39.
    Youssef, A.: Information Search And Retrieval of Mathematical Contents: Issues And Methods. In: The proceedings of the ISCA 14th International Conference on Intelligent and Adaptive Systems and Software Engineering (IASSE-2005), Toronto, Canada, July 20-22 (2005)Google Scholar
  40. 40.
    Zentralblatt MATH database at European Mathematical Information Service (EMIS), http://www.emis.de/ZMATH/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Abdou Youssef
    • 1
  1. 1.Department of Computer ScienceThe George Washington UniversityWashington DCUSA

Personalised recommendations