From Notation to Semantics: There and Back Again

  • Luca Padovani
  • Stefano Zacchiroli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4108)

Abstract

Mathematical notation is a structured, open, and ambiguous language. In order to support mathematical notation in MKM applications one must necessarily take into account presentational as well as semantic aspects. The former are required to create a familiar, comfortable, and usable interface to interact with. The latter are necessary in order to process the information meaningfully.

In this paper we investigate a framework for dealing with mathematical notation in a meaningful, extensible way, and we show an effective instantiation of its architecture to the field of interactive theorem proving. The framework builds upon well-known concepts and widely-used technologies and it can be easily adopted by other MKM applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, A.A.: Digitisation, representation and formalisation: Digital libraries of mathematics. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 1–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Asperti, A., Guidi, F., Padovani, L., Sacerdoti Coen, C., Schena, I.: Mathematical knowledge management in HELM. Annals of Mathematics and Artificial Intelligence 38(1–3), 27–46 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Augustsson, L.: Compiling pattern matching. In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 368–381. Springer, Heidelberg (1985)Google Scholar
  4. 4.
    The Coq proof-assistant, http://coq.inria.fr
  5. 5.
    de Jonge, M.: A pretty-printer for every occasion. In: Ferguson, I., Gray, J., Scott, L. (eds.) Proceedings of the 2nd International Symposium on Constructing Software Engineering Tools (CoSET2000), University of Wollongong, Australia, pp. 68–77 (June 2000)Google Scholar
  6. 6.
    Le Fessant, F., Maranget, L.: Optimizing pattern-matching. In: Proceedings of the 2001 International Conference on Functional Programming, ACM Press, New York (2001)Google Scholar
  7. 7.
    Di Lena, P.: Generazione automatica di stylesheet per notazione matematica. Master’s thesis, University of Bologna (2003)Google Scholar
  8. 8.
    Mathematical Markup Language (MathML) Version 2.0. W3C Recommendation 21 (February 2001) (2003), http://www.w3.org/TR/MathML2
  9. 9.
    The MoWGLI Proposal, HTML version, http://mowgli.cs.unibo.it/html_no_frames/project.html
  10. 10.
    Naylor, B., Watt, S.: Meta-stylesheets for the conversion of mathematical documents into multiple forms. Annals of Mathematics and Artificial Intelligence 38(1–3), 3–25 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rekers, J.: Parser Generation for Interactive Environments. PhD thesis, University of Amsterdam (1992)Google Scholar
  12. 12.
    Coen, C.S.: Mathematical Knowledge Management and Interactive Theorem Proving. PhD thesis, University of Bologna, Technical Report UBLCS 2004-5 (2004)Google Scholar
  13. 13.
    Coen, C.S., Zacchiroli, S.: Efficient ambiguous parsing of mathematical formulae. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 347–362. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    The OpenMath Society. The OpenMath Standard 2.0 (June 2004), http://www.openmath.org/standard/om20/omstd20html-0.xml
  15. 15.
    Werner, B.: Une Théorie des Constructions Inductives. PhD thesis, Université Paris VII (May 1994)Google Scholar
  16. 16.
    XSL Transformations (XSLT). Version 1.0. W3C Recommendation, 16 (November 1999), http://www.w3.org/TR/xslt

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luca Padovani
    • 1
  • Stefano Zacchiroli
    • 2
  1. 1.Information Science and Technology InstituteUniversity of Urbino 
  2. 2.Department of Computer ScienceUniversity of Bologna 

Personalised recommendations