Path-Equivalent Removals of ε-transitions in a Genomic Weighted Finite Automaton

  • Mathieu Giraud
  • Philippe Veber
  • Dominique Lavenier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4094)


Weighted finite automata (WFA) are used with accelerating hardware to scan large genomic banks. Hardwiring such automata raise surface area and clock frequency constraints, requiring efficient ε-transitions-removal techniques. In this paper, we present new bounds on the number of new transitions for several ε-transitions-removal problems. We study the case of acyclic WFA. We introduce a new problem, the partial removal of ε-transitions while accepting short chains of ε-transitions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giraud, M., Lavenier, D.: Linear encoding scheme for weighted finite automata. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 146–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Giraud, M., Lavenier, D.: Dealing with hardware space limits when removing epsilon-transitions in a genomic weighted finite automaton. Journal of Automata, Languages and Combinatorics 10 (2005)Google Scholar
  3. 3.
    Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles, Techniques and Tools. Addison Wesley, Reading (1986)Google Scholar
  4. 4.
    Thompson, K.: Regular expression search algorithm. Communications of the ACM 11, 419–422 (1968)MATHCrossRefGoogle Scholar
  5. 5.
    Mohri, M.: Generic epsilon-removal and input epsilon-normalization algorithms for weighted transducers. International Journal of Foundations of Computer Science 13, 129–143 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mohri, M.: Finite-State Transducers in Language and Speech Processing. Computational Linguistics 23, 269–311 (1997)MathSciNetGoogle Scholar
  7. 7.
    Quignon, P., Giraud, M., Rimbault, M., Lavigne, P., Tacher, S., Morin, E., Retout, E., Valin, A.S., Lindblad-Toh, K., Nicolas, J., Galibert, F.: The dog and rat olfactory receptor repertoires. Genome Biology 6, R83 (2005)Google Scholar
  8. 8.
    Hromkovic, J., Seibert, S., Wilke, T.: Translating regular expressions into small epsilon-free nondeterministic finite automata. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 55–66. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Lifshits, Y.: A lower bound on the size of ε-free NFA corresponding to a regular expression. Information Processing Letters 85, 293–299 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hagenah, C., Muscholl, A.: Computing ε-free NFA from regular expressions in \(\mathcal{O}{n \log^2(n)}\) time. Mathematical Foundations of Computer Science, 277–285 (1998)Google Scholar
  11. 11.
    Coste, F., Kerbellec, G.: A similar fragments merging approach to learn automata on proteins. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS, vol. 3720, pp. 522–529. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mathieu Giraud
    • 1
  • Philippe Veber
    • 1
  • Dominique Lavenier
    • 1
  1. 1.IRISA / CNRS / Université de Rennes 1RennesFrance

Personalised recommendations