Advertisement

Does o-Substitution Preserve Recognizability?

  • Andreas Maletti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4094)

Abstract

Substitution operations on tree series are at the basis of systems of equations (over tree series) and tree series transducers. Tree series transducers seem to be an interesting transformation device in syntactic pattern matching. In this contribution, it is shown that o-substitution preserves recognizable tree series provided that the target tree series is linear and the semiring is idempotent, commutative, and continuous. This result is applied to prove that the range of the o-t-ts transformation computed by a linear recognizable tree series transducer is pointwise recognizable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and top-down tree series transformations. J. Autom. Lang. Combin. 7, 11–70 (2002)zbMATHGoogle Scholar
  2. 2.
    Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4, 257–287 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci. 4, 339–367 (1970)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoret. Comput. Sci. 18, 115–148 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kuich, W.: Formal power series over trees. In: Bozapalidis, S. (ed.) Proc. 3rd Int. Conf. Develop. in Lang. Theory, Aristotle University of Thessaloniki, pp. 61–101 (1998)Google Scholar
  6. 6.
    Irons, E.T.: A syntax directed compiler for ALGOL 60. Commun. ACM 4, 51–55 (1961)zbMATHCrossRefGoogle Scholar
  7. 7.
    Morawietz, F., Cornell, T.: The MSO logic-automation connection in linguistics. In: Lecomte, A., Perrier, G., Lamarche, F. (eds.) LACL 1997. LNCS, vol. 1582, pp. 112–131. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Bex, G.J., Maneth, S., Neven, F.: A formal model for an expressive fragment of XSLT. Inform. Systems 27, 21–39 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Ferdinand, C., Seidl, H., Wilhelm, R.: Tree automata for code selection. Acta Inform. 31, 741–760 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Seidl, H.: Finite tree automata with cost functions. Theoret. Comput. Sci. 126, 113–142 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    López, D., Piñaga, I.: Syntactic pattern recognition by error correcting analysis on tree automata. In: Ferri, F.J., Quereda, J.M.I., Amin, A., Pudil, P. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 133–142. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Graehl, J., Knight, K.: Training tree transducers. In: HLT-NAACL, pp. 105–112 (2004)Google Scholar
  13. 13.
    Borchardt, B.: Code selection by tree series transducers. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 57–67. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Yamada, K., Knight, K.: A syntax-based statistical translation model. In: Proc. 39th Annual Meeting Assoc. Comput. Ling., pp. 523–530. Morgan Kaufmann, San Francisco (2001)Google Scholar
  15. 15.
    Brown, P.F., Cocke, J., Della Pietra, S., Della Pietra, V.J., Jelinek, F., Mercer, R.L., Roossin, P.S.: A statistical approach to language translation. In: Proc. 12th Int. Conf. Comput. Ling., pp. 71–76 (1988)Google Scholar
  16. 16.
    Brown, P.F., Della Pietra, S., Della Pietra, V.J., Mercer, R.L.: The mathematics of statistical machine translation: Parameter estimation. Comput. Linguist. 19, 263–311 (1993)Google Scholar
  17. 17.
    Fülöp, Z., Vogler, H.: Tree series transformations that respect copying. Theory Comput. Systems 36, 247–293 (2003)zbMATHCrossRefGoogle Scholar
  18. 18.
    Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Systems 32, 1–33 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kuich, W.: Full abstract families of tree series I. In: Karhumäki, J., Maurer, H.A., Paun, G., Rozenberg, G. (eds.) Jewels Are Forever, pp. 145–156. Springer, Heidelberg (1999)Google Scholar
  20. 20.
    Ésik, Z., Kuich, W.: Formal tree series. J. Autom. Lang. Combin. 8, 219–285 (2003)zbMATHGoogle Scholar
  21. 21.
    Borchardt, B.: The Theory of Recognizable Tree Series. PhD thesis, Technische Universität Dresden (2005)Google Scholar
  22. 22.
    Pech, C.: Kleene-Type Results for Weighted Tree-Automata. PhD thesis, Technische Universität Dresden (2003)Google Scholar
  23. 23.
    Engelfriet, J.: Tree automata and tree grammars. Technical Report DAIMI FN-10, Aarhus University (1975)Google Scholar
  24. 24.
    Kuich, W.: Tree transducers and formal tree series. Acta Cybernet 14, 135–149 (1999)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)zbMATHGoogle Scholar
  26. 26.
    Maletti, A.: Relating tree series transducers and weighted tree automata. Int. J. Found. Comput. Sci. 16, 723–741 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andreas Maletti
    • 1
  1. 1.Department of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations