Advertisement

Around Hopcroft’s Algorithm

  • Manuel Baclet
  • Claire Pagetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4094)

Abstract

In this paper, a reflection is made on an indeterminism inherent to Hopcroft’s minimization algorithm: the splitter choice. We have implemented two natural policies (FIFO and FILO) for managing the set of splitters for which we obtain the following practical results: the FILO strategy performs better than the FIFO strategy, in the case of a one letter alphabet, the practical complexity in the FILO case never exceeds a linear one and our implementation is more efficient than the minimization algorithm of the FSM tool. This implementation is being integrated in a finite automata library, the Dash library. Thus, we present an efficient manner to manipulate automata by using canonical minimal automata.

Keywords

Finite automata minimization Hopcroft’s algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BBC92]
    Beauquier, D., Berstel, J., Chrétienne, P.: Éléments d’Algorithmique, Masson (1992)Google Scholar
  2. [BC04]
    Berstel, J., Carton, O.: On the complexity of hopcroft’s state minimization algorithm. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 35–44. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. [BP06]
    Baclet, M., Pagetti, C.: Around Hopcroft’s Algorithm. Technical Report LSV-06-12, Laboratoire Spécification et Vérification, ENS de Cachan, France (2006)Google Scholar
  4. [BPP04]
    Baclet, M., Pacalet, R., Petit, A.: Register transfer level simulation. Technical Report LSV-04-10, Laboratoire Spécification et Vérification, ENS de Cachan, France (2004)Google Scholar
  5. [Brz62]
    Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. In: Mathematical Theory of Automata. MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, New York (1962)Google Scholar
  6. [Cou04]
    Couvreur, J.-M.: A BDD-like implementation of an automata package. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 310–311. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. [Hop71]
    Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automaton. In: Kohavi, Z. (ed.) The Theory of Machines and Computations, pp. 189–196. Academic Press, London (1971)Google Scholar
  8. [HU79]
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  9. [KM01]
    Klarlund, N., Møller, A.: MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1, Department of Computer Science, University of Aarhus (January 2001)Google Scholar
  10. [Knu01]
    Knuutila, T.: Re-describing an algorithm by Hopcroft. Theoretical Computer Science 250(1-2), 333–363 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [MPR00]
    Mohri, M., Pereira, F., Riley, M.: The design principles of a weighted finite-state transducer library. Theoretical Computer Science 231(1), 17–32 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Ner58]
    Nerode, A.: Linear automaton transformation. Proc. American Mathematical Society 9, 541–544 (1958)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [PTB85]
    Paige, R., Tarjan, R.E., Bonic, R.: A linear time solution to the single function coarsest partition problem. Theoretical Computer Science 40, 67–84 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Wat95]
    Watson, B.W.: Taxonomies and Toolkits of Regular Language Algorithms. PhD thesis, Eindhoven University of Technology, the Netherlands (1995)Google Scholar
  15. [Wat01]
    Watson, B.W.: An incremental DFA minimization algorithm. In: Proc. 3rd International Workshop on Finite-State Methods and Natural Language Processing (FSMNLP 2001) (2001)Google Scholar
  16. [WD03]
    Watson, B.W., Daciuk, J.: An efficient incremental DFA minimization algorithm. Natural Language Engineering 9(1), 49–64 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Manuel Baclet
    • 1
  • Claire Pagetti
    • 2
  1. 1.IRIT – UPS & CNRSLSV – ENS de Cachan & CNRS – Cachan, FranceToulouseFrance
  2. 2.ONERA / CertToulouseFrance

Personalised recommendations