Extending OLAP with Fuzziness for Effective Mining of Fuzzy Multidimensional Weighted Association Rules

  • Mehmet Kaya
  • Reda Alhajj
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4093)

Abstract

This paper contributes to the ongoing research on multidimensional online association rules mining by proposing a general architecture that utilizes a fuzzy data cube combined with the concepts of weight and multiple-level to mine fuzzy weighted multi-cross-level association rules. We compared the proposed approach to an existing approach that does not utilize fuzziness. Experimental results on the adult data of the United States census in year 2000 demonstrate the effectiveness and applicability of the proposed fuzzy OLAP based mining approach.

Keywords

association rules data mining fuzzy data cube multidimensional mining OLAP weighted mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: Proc. of ACM SIGMOD, pp. 1–12 (1996)Google Scholar
  2. 2.
    Kuok, C.M., Fu, A.W., Wong, M.H.: Mining fuzzy association rules in databases. SIGMOD Record 17(1), 41–46 (1998)CrossRefGoogle Scholar
  3. 3.
    Park, J.S., Chen, M.S., Yu, P.S.: An effective hash-based algorithm for mining association rules. In: Proc. of ACM SIGMOD, pp. 175–186 (1995)Google Scholar
  4. 4.
    Ng, R., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proc. of ACM SIGMOD, pp. 13–24 (1998)Google Scholar
  5. 5.
    Hidber, C.: Online Association Rule Mining. In: Proc. of ACM SIGMOD, pp. 145–156 (1999)Google Scholar
  6. 6.
    Han, J.: OLAP Mining: An Integration of OLAP with Data Mining. In: Proc. of IFIP ICDS, pp. 1–11 (1997)Google Scholar
  7. 7.
    Han, J.: Towards on-line analytical mining in large databases. In: Proc. of ACM SIGMOD (1998)Google Scholar
  8. 8.
    Han, J., Fu, Y.: Mining multiple-level association rules in large databases. IEEE TKDE 11(5), 798–804 (1999)Google Scholar
  9. 9.
    Kamber, M., Han, J., Chiang, J.Y.: Meta-rule guided mining of multidimensional association rules using data cubes. In: Proc. of ACM KDD, pp. 207–210 (1997)Google Scholar
  10. 10.
    Lu, H., Feng, L., Han, J.: Beyond Intratransaction Association Analysis: Mining Multidimensional Intertransaction Association Rules. ACM TOIS 18(4), 423–454 (2000)CrossRefGoogle Scholar
  11. 11.
    Tung, A.K.H., Lu, H., Han, J., Feng, L.: Efficient Mining of Intertransaction Association Rules. IEEE TKDE 15(1), 43–56 (2003)Google Scholar
  12. 12.
    Agarwal, C.C., Yu, P.S.: A new approach to online generation of association rules. IEEE TKDE 13(4), 527–540 (2001)Google Scholar
  13. 13.
    Cai, C.H., et al.: Mining Association Rules with Weighted Items. In: Proc. of IDEAS, pp. 68–77 (1998)Google Scholar
  14. 14.
    Yue, S., et al.: Mining fuzzy association rules with weighted items. In: Proc. of IEEE SMC (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mehmet Kaya
    • 1
  • Reda Alhajj
    • 2
    • 3
  1. 1.Dept. of Computer EngFirat UniversityElazigTurkey
  2. 2.Dept. of Computer ScienceUniversity of CalgaryCalgaryCanada
  3. 3.Dept. of Computer ScienceGlobal UniversityBeirut

Personalised recommendations