Combining Topological and Directional Information: First Results

  • Sanjiang Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4092)


Representing and reasoning about spatial information is important in artificial intelligence and geographical information science. Relations between spatial entities are the most important kind of spatial information. Most current formalisms of spatial relations focus on one single aspect of space. This contrasts sharply with real world applications, where several aspects are usually involved together. This paper proposes a qualitative calculus that combines a simple directional relation model with the well-known topological RCC5 model. We show by construction that the consistency of atomic networks can be decided in polynomial time.


Qualitative Spatial Reasoning topological relations directional relations consistency realization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Randell, D., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Nebel, B., Swartout, W., Rich, C. (eds.) Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning, Los Allos, pp. 165–176. Morgan Kaufmann, San Francisco (1992)Google Scholar
  2. 2.
    Düntsch, I., Wang, H., McCloskey, S.: A relation-algebraic approach to the Region Connection Calculus. Theoretical Computer Science 255, 63–83 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Li, S., Ying, M.: Region Connection Calculus: Its models and composition table. Artificial Intelligence 145(1-2), 121–146 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the RegionConnection Calculus. Artificial Intelligence 108, 69–123 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Li, S.: On topological consistency and realization. Constraints 11(1), 31–51 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Li, S., Wang, H.: RCC8 binary constraint network can be consistently extended. Artif. Intell. 170(1), 1–18 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Frank, A.U.: Qualitative spatial reasoning about cardinal directions. In: Proceedings of the 7th Austrian Conference on Artificial Intelligence, pp. 157–167 (1991)Google Scholar
  8. 8.
    Ligozat, G.: Reasoning about cardinal directions. J. Vis. Lang. Comput. 9(1), 23–44 (1998)CrossRefGoogle Scholar
  9. 9.
    Balbiani, P., Condotta, J.F., del Cerro, L.F.: A new tractable subclass of the rectangle algebra. In: Dean, T. (ed.) IJCAI, pp. 442–447. Morgan Kaufmann, San Francisco (1999)Google Scholar
  10. 10.
    Allen, J.: Maintaining knowledge about temporal intervals. Communications of the ACM 26, 832–843 (1983)zbMATHCrossRefGoogle Scholar
  11. 11.
    Goyal, R., Egenhofer, M.J.: The direction-relation matrix: A representation for directions relations between extended spatial objects. In: The Annual Assembly and the Summer Retreat of University Consortium for Geographic Information Systems Science (1997)Google Scholar
  12. 12.
    Skiadopoulos, S., Koubarakis, M.: On the consistency of cardinal direction constraints. Artif. Intell. 163(1), 91–135 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-theoretic approach. J. ACM 40(5), 1108–1133 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sistla, A.P., Yu, C.T.: Reasoning about qualitative spatial relationships. Journal of Automated Reasoning 25(4), 291–328 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sanjiang Li
    • 1
    • 2
  1. 1.Department of Computer Science & TechnologyTsinghua UniversityBeijingChina
  2. 2.Institut für InformatikAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations