Aggregating Strategy for Online Auctions

  • Shigeaki Harada
  • Eiji Takimoto
  • Akira Maruoka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4112)

Abstract

We consider the online auction problem in which an auctioneer is selling an identical item each time when a new bidder arrives. It is known that results from online prediction can be applied and achieve a constant competitive ratio with respect to the best fixed price profit. These algorithms work on a predetermined set of price levels. We take into account the property that the rewards for the price levels are not independent and cast the problem as a more refined model of online prediction. We then use Vovk’s Aggregating Strategy to derive a new algorithm. We give a general form of competitive ratio in terms of the price levels. The optimality of the Aggregating Strategy gives an evidence that our algorithm performs at least as well as the previously proposed ones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, A., Kumar, V., Rudra, A., Wu, F.: Online Learning in Online Auctions. In: Proc. 14th SODA (2003)Google Scholar
  2. 2.
    Blum, A., Hartline, J.D.: Near-Optimal Online Auctions. In: Proc. 16th SODA, pp. 1156–1163 (2005)Google Scholar
  3. 3.
    Bar-Yossef, Z., Hildrum, K., Wu, F.: Incentive-Compatible Online Auctions for Digital Goods. In: Proc. SODA 2002, pp. 964–970 (2002)Google Scholar
  4. 4.
    Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., Warmuth, M.K.: How to use expert advice. J. ACM 44(3), 427–485 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. JCSS 55(1), 119–139 (1997)MATHMathSciNetGoogle Scholar
  6. 6.
    Hutter, M., Poland, J.: Prediction with expert advice by following the perturbed leader for general weights. In: Ben-David, S., Case, J., Maruoka, A. (eds.) ALT 2004. LNCS (LNAI), vol. 3244, pp. 279–293. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Harada, S., Takimoto, E., Maruoka, A.: Online Allocation with Risk Information. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 343–355. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 26–40. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inform. Comput. 108(2), 212–261 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Vovk, V.: A game of prediction with expert advice. JCSS 56(2), 153–173 (1998)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shigeaki Harada
    • 1
  • Eiji Takimoto
    • 2
  • Akira Maruoka
    • 2
  1. 1.NTT Service Integration Laboratories 
  2. 2.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations