Autonomic Computing for Virtual Laboratories

  • Cesare Pautasso
  • Win Bausch
  • Gustavo Alonso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4028)


Virtual laboratories can be characterized by their long-lasting, large-scale computations, where a collection of heterogeneous tools is integrated into data processing pipelines. Such virtual experiments are typically modeled as scientific workflows in order to guarantee their reproduceability. In this chapter we present JOpera, one of the first autonomic infrastructures for managing virtual laboratories. JOpera provides a sophisticated Eclipse-based graphical environment to design, monitor and debug distributed computations at a high level of abstraction. The chapter describes the architecture of the workflow execution environment, emphasizing its support for the integration of heterogeneous tools and evaluating its autonomic capabilities, both in terms of reliable execution (self-healing) and automatic performance optimization (self-tuning).


Service Composition Execution Environment Virtual Experiment Autonomic Computing Autonomic Manager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Abramson, D., Giddy, J., Kotler, L.: High performance parametric modeling with Nimrod/G: killer application for the global grid? In: Proceedings of the 14th International Parallel and Distributed Processing Symposium (IPDPS 2000), Cancun, Mexico, pp. 520–528 (2000)Google Scholar
  3. 3.
    Alizadeh, A., Eisen, M., Davis, R., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2001)CrossRefGoogle Scholar
  4. 4.
    Alonso, G., Bausch, W., Pautasso, C., Hallett, M., Kahn, A.: Dependable Computing in Virtual Laboratories. In: Proceedings of the 17th International Conference on Data Engineering (ICDE 2001), Heidelberg, Germany, pp. 235–242 (2001)Google Scholar
  5. 5.
    Bausch, W., Pautasso, C., Schaeppi, R., Alonso, G.: BioOpera: Cluster-aware computing. In: Proceedings of the 2002 IEEE International Conference on Cluster Computing (CLUSTER 2002), Chicago, IL, USA, pp. 99–106 (2002)Google Scholar
  6. 6.
    Boeckmann, B., Bairoch, A., Apweiler, R., et al.: The Swiss-Prot protein sequence data bank and its supplement trEMBL in 2003. Nuc. Acids Res. 31, 365–370 (2003)CrossRefGoogle Scholar
  7. 7.
    Bushmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: A system of patterns. Wiley, Chichester (1996)Google Scholar
  8. 8.
    Cannarozzi, G., Hallett, M., Norberg, J., Zhou, X.: A cross-comparison of a large gene dataset. Bioinformatics 16, 654–655 (2000)CrossRefGoogle Scholar
  9. 9.
    Chervitz, S.: Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282, 2022–2028 (1998)CrossRefGoogle Scholar
  10. 10.
    Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputing Applications 11(2), 115–128 (1997)CrossRefGoogle Scholar
  11. 11.
    Heinis, T., Pautasso, C., Alonso, G.: Design and Evaluation of an Autonomic Workflow Engine. In: Proc. of the 2nd International Conference on Autonomic Computing, Seattle, WA (June 2005)Google Scholar
  12. 12.
    Heinis, T., Pautasso, C., Deak, O., Alonso, G.: Publishing Persistent Grid Computations as WS Resources. In: Proc. of the 1st IEEE International Conference on e-Science and Grid Computing, Melbourne, Australia (December 2005)Google Scholar
  13. 13.
    IBM and Apache Foundation. Web Service Invocation Framework (WSIF) (2003),
  14. 14.
    Litzkow, M.J., Livny, M., Mutka, M.W.: Condor—A Hunter of Idle Workstations. In: Proceedings of the 8th Int’l Conf. on Distributed Computing Systems, pp. 104–111 (1988)Google Scholar
  15. 15.
    Ludaescher, B., Goble, C. (eds.): Special Section on Scientific Workflows. SIGMOD Record, vol. 34 (2005)Google Scholar
  16. 16.
    Pautasso, C.: JOpera: Process Support for more than Web services,
  17. 17.
    Pautasso, C., Alonso, G.: From Web Service Composition to Megaprogramming. In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324, pp. 39–53. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Pautasso, C., Alonso, G.: The JOpera Visual Composition Language. Journal of Visual Languages and Computing 16(1–2), 119–152 (2004)Google Scholar
  19. 19.
    Pautasso, C., Alonso, G.: Flexible Binding for Reusable Composition of Web Services. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS, vol. 3628, pp. 151–166. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Snel, B., Bork, P., Muynen, M.: Genome phylogeny based on content. Nature Genet. 21, 108–110 (1999)CrossRefGoogle Scholar
  21. 21.
    Stuedi, P., Alonso, G.: Connectivity in the presence of shadowing in 802.11 ad hoc networks. In: IEEE Wireless and Communications and Networking Conference (WCNC) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Cesare Pautasso
    • 1
  • Win Bausch
    • 2
  • Gustavo Alonso
    • 1
  1. 1.Department of Computer ScienceETH ZurichZürichSwitzerland
  2. 2.AWK Group AGZürichSwitzerland

Personalised recommendations