Certified Higher-Order Recursive Path Ordering

  • Adam Koprowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4098)


The paper reports on a formalization of a proof of well-foundedness of the higher-order recursive path ordering (HORPO) in the proof checker Coq. The development is axiom-free and fully constructive. Three substantive parts that could be used also in other developments are the formalizations of the simply-typed lambda calculus, of finite multisets and of the multiset ordering. The Coq code consists of more than 1000 lemmas and 300 definitions.


  1. 1.
    Barendregt, H.P.: Lambda calculi with types. Handbook of logic in computer science II, 117–309 (1992)MathSciNetGoogle Scholar
  2. 2.
    Berger, U., Berghofer, S., Letouzey, P., Schwichtenberg, H.: Program extraction from normalization proofs. Studia Logica (Special issue) (to appear, 2005)Google Scholar
  3. 3.
    Berghofer, S.: A Constructive Proof of Higman’s Lemma in Isabelle. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 66–82. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    de Bruijn, N.G.: Lambda-calculus notation with nameless dummies: a tool for automatic formula manipulation with application to the Church-Rosser theorem. Indag. Math. 34(5), 381–392 (1972)Google Scholar
  5. 5.
    Coupet-Grimal, S., Delobel, W.: A Constructive Axiomatization of the Recursive Path Ordering. Research report 28-2006, LIF, France (2006)Google Scholar
  6. 6.
    Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17, 279–301 (1982)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jouannaud, J.-P., Okada, M.: Executable higher order algebraic specification languages. In: LICS 1991, pp. 350–361 (1991)Google Scholar
  8. 8.
    Jouannaud, J.-P., Rubio, A.: The higher-order recursive path ordering. In: LICS 1999, Italy, pp. 402–411 (1999)Google Scholar
  9. 9.
    Jouannaud, J.-P., Rubio, A.: Higher-order recursive path orderings ‘à la carte’ (2001)Google Scholar
  10. 10.
    Koprowski, A.: Well-foundedness of the higher-order recursive path ordering in Coq. TI-IR-004, Vrije Universiteit, The Netherlands, Master’s Thesis (2004)Google Scholar
  11. 11.
    Koprowski, A.: Coq formalization of the higher-order recursive path ordering. Technical report in CS-Report series, Eindhoven Univ. of TechGoogle Scholar
  12. 12.
    Leclerc, F.: Termination proof of term rewriting systems with the multiset path ordering: A complete development in the system Coq. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 312–327. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Murthy, C.: Extracting constructive content from classical proofs, PhD Thesis (1990)Google Scholar
  14. 14.
    Persson, H.: Type theory and the integrated logic of programs, PhD Thesis (1999)Google Scholar
  15. 15.
    van Raamsdonk, F.: Term Rewriting Systems. Cambridge Tracts in TCS, vol. 55, ch. 11, pp. 588–668. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Adam Koprowski
    • 1
  1. 1.Department of Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations