Advertisement

Certified Higher-Order Recursive Path Ordering

  • Adam Koprowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4098)

Abstract

The paper reports on a formalization of a proof of well-foundedness of the higher-order recursive path ordering (HORPO) in the proof checker Coq. The development is axiom-free and fully constructive. Three substantive parts that could be used also in other developments are the formalizations of the simply-typed lambda calculus, of finite multisets and of the multiset ordering. The Coq code consists of more than 1000 lemmas and 300 definitions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barendregt, H.P.: Lambda calculi with types. Handbook of logic in computer science II, 117–309 (1992)MathSciNetGoogle Scholar
  2. 2.
    Berger, U., Berghofer, S., Letouzey, P., Schwichtenberg, H.: Program extraction from normalization proofs. Studia Logica (Special issue) (to appear, 2005)Google Scholar
  3. 3.
    Berghofer, S.: A Constructive Proof of Higman’s Lemma in Isabelle. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 66–82. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    de Bruijn, N.G.: Lambda-calculus notation with nameless dummies: a tool for automatic formula manipulation with application to the Church-Rosser theorem. Indag. Math. 34(5), 381–392 (1972)Google Scholar
  5. 5.
    Coupet-Grimal, S., Delobel, W.: A Constructive Axiomatization of the Recursive Path Ordering. Research report 28-2006, LIF, France (2006)Google Scholar
  6. 6.
    Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17, 279–301 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jouannaud, J.-P., Okada, M.: Executable higher order algebraic specification languages. In: LICS 1991, pp. 350–361 (1991)Google Scholar
  8. 8.
    Jouannaud, J.-P., Rubio, A.: The higher-order recursive path ordering. In: LICS 1999, Italy, pp. 402–411 (1999)Google Scholar
  9. 9.
    Jouannaud, J.-P., Rubio, A.: Higher-order recursive path orderings ‘à la carte’ (2001)Google Scholar
  10. 10.
    Koprowski, A.: Well-foundedness of the higher-order recursive path ordering in Coq. TI-IR-004, Vrije Universiteit, The Netherlands, Master’s Thesis (2004)Google Scholar
  11. 11.
    Koprowski, A.: Coq formalization of the higher-order recursive path ordering. Technical report in CS-Report series, Eindhoven Univ. of TechGoogle Scholar
  12. 12.
    Leclerc, F.: Termination proof of term rewriting systems with the multiset path ordering: A complete development in the system Coq. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 312–327. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Murthy, C.: Extracting constructive content from classical proofs, PhD Thesis (1990)Google Scholar
  14. 14.
    Persson, H.: Type theory and the integrated logic of programs, PhD Thesis (1999)Google Scholar
  15. 15.
    van Raamsdonk, F.: Term Rewriting Systems. Cambridge Tracts in TCS, vol. 55, ch. 11, pp. 588–668. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Adam Koprowski
    • 1
  1. 1.Department of Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations