Checking Conservativity of Overloaded Definitions in Higher-Order Logic

  • Steven Obua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4098)


Overloading in the context of higher-order logic has been used for some time now. We define what we mean by Higher-Order Logic with Conservative Overloading (HOLCO). HOLCO captures how overloading is actually applied by the users of Isabelle.

We show that checking whether definitions obey the rules of HOLCO is not even semi-decidable.

The undecidability proof reveals strong ties between our problem and the dependency pair method by Arts and Giesl for proving termination of TRSs via the notion overloading TRS. The dependency graph of overloading TRSs can be computed exactly. We exploit this by providing an algorithm that checks the conservativity of definitions based on the dependency pair method and a simple form of linear polynomial interpretation; the algorithm also uses the strategy of Hirokawa and Middeldorp of recursively calculating the strongly connected components of the dependency graph. The algorithm is powerful enough to deal with all overloaded definitions that the author has encountered so far in practice.

An implementation of this algorithm is available as part of a package that adds conservative overloading to Isabelle. This package also allows to delegate the conservativity check to external tools like the Tyrolean Termination Tool or the Automated Program Verification Environment.


Dependency Graph Theory Extension Cyclic Component Type Constructor Dependency Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Obua, S.: Conservative Overloading in Higher-Order Logic. Technical Report, Institut für Informatik, Technische Universität München (2006),
  2. 2.
    Paulson, L.C.: The Foundation of a Generic Theorem Prover. Journal of Automated Reasoning 5(3), 363–397 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Wenzel, M.: Type Classes and Overloading in Higher-Order Logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  5. 5.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge U.P., NewYork (1998)Google Scholar
  6. 6.
    Terese: Term Rewriting Systems. Cambridge U.P., New York (2003)Google Scholar
  7. 7.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199, 172–199 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ruohonen, K.: Reversible Machines and Post’s Correspondence Problem for Biprefix Morphisms. Journal of Information Processing and Cybernetics 21(12), 579–595 (1985)zbMATHMathSciNetGoogle Scholar
  10. 10.
    The HOL System Description,
  11. 11.
    Harrison, J.: The HOL Light theorem prover,
  12. 12.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated Termination Proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 210–220. Springer, Heidelberg (2004), CrossRefGoogle Scholar
  13. 13.
    Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005), CrossRefGoogle Scholar
  14. 14.
    Obua, S.: Proving Bounds for Real Linear Programs in Isabelle/HOL. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 227–244. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Urban, C.: Nominal Techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Vanderbei, R.J.: Linear Programming, 2nd edn. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  18. 18.
    Giesl, J.: Generating Polynomial Orderings for Termination Proofs. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 426–431. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Brucker, A.D., Wolff, B.: A Proposal for a Formal OCL Semantics in Isabelle/HOL. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 99–114. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Giesl, J., Arts, T.: Verification of Erlang Processes by Dependency Pairs. Applicable Algebra in Engineering, Communication and Computing 12, 39–72 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Steven Obua
    • 1
  1. 1.Technische Universität MünchenGarchingGermany

Personalised recommendations