On Finding an Inference-Proof Complete Database for Controlled Query Evaluation

  • Joachim Biskup
  • Lena Wiese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4127)


Controlled Query Evaluation (CQE) offers a logical framework to prevent a user of a database from inadvertently gaining knowledge he is not allowed to know. By modeling the user’s a priori knowledge in an appropriate way, a CQE system can control not only plain access to database entries but also inferences made by the user. A dynamic CQE system that enforces inference control at runtime has already been investigated. In this article, we pursue a static approach that constructs an inference-proof database in a preprocessing step. The inference-proof database can respond to any query without enabling the user to infer confidential information. We illustrate the semantics of the system by a comprehensive example and state the essential requirements for an inference-proof and highly available database. We present an algorithm that accomplishes the preprocessing by combining SAT solving and “Branch and Bound”.


Controlled Query Evaluation inference control lying confidentiality of data complete database systems propositional logic SAT solving Branch and Bound 


  1. 1.
    Biskup, J., Bonatti, P.A.: Lying versus refusal for known potential secrets. Data & Knowledge Engineering 38(2), 199–222 (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Biskup, J., Bonatti, P.A.: Controlled query evaluation for enforcing confidentiality in complete information systems. International Journal of Information Security 3(1), 14–27 (2004)CrossRefGoogle Scholar
  3. 3.
    Biskup, J., Bonatti, P.A.: Controlled query evaluation for known policies by combining lying and refusal. Annals of Mathematics and Artificial Intelligence 40(1-2), 37–62 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Biskup, J., Weibert, T.: Refusal in incomplete databases. In: Farkas, C., Samarati, P. (eds.) Proceedings of the 18th Annual IFIP WG 11.3 Conference on Data and Applications Security, Proceedings, pp. 143–157. Kluwer, Dordrecht (2004)Google Scholar
  5. 5.
    Chang, L., Moskowitz, I.S.: A study of inference problems in distributed databases. In: Gudes, E., Shenoi, S. (eds.) Proceedings of the 16th Annual IFIP WG 11.3 Conference on Data and Applications Security, pp. 191–204. Kluwer, Dordrecht (2002)Google Scholar
  6. 6.
    Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Communications of the ACM 5(7), 394–397 (1962)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Delgrande, J.P., Schaub, T.: Two approaches to merging knowledge bases. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 426–438. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Domingo-Ferrer, J. (ed.): Inference Control in Statistical Databases. LNCS, vol. 2316. Springer, Heidelberg (2002)MATHGoogle Scholar
  10. 10.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Farkas, C., Jajodia, S.: The inference problem: A survey. SIGKDD Explorations 4(2), 6–11 (2002)CrossRefGoogle Scholar
  12. 12.
    Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer, Heidelberg (2003)CrossRefMATHGoogle Scholar
  13. 13.
    Ganai, M.K., Ashar, P., Gupta, A., Zhang, L., Malik, S.: Combining strengths of circuit-based and CNF-based algorithms for a high-performance SAT solver. In: Proceedings of the 39th Design Automation Conference, pp. 747–750. ACM Press, New York (2002)Google Scholar
  14. 14.
    Giunchiglia, E., Sebastiani, R.: Applying the Davis-Putnam procedure to non-clausal formulas. In: Lamma, E., Mello, P. (eds.) AI*IA 1999. LNCS (LNAI), vol. 1792, pp. 84–94. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Hale, J., Shenoi, S.: Analyzing fd inference in relational databases. Data & Knowledge Engineering 18(2), 167–183 (1996)CrossRefMATHGoogle Scholar
  16. 16.
    Subbarayan, S., Pradhan, D.K.: Niver: Non increasing variable elimination resolution for preprocessing SAT instances. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Thiffault, C., Bacchus, F., Walsh, T.: Solving non-clausal formulas with DPLL search. In: 7th International Conference on Theory and Applications of Satisfiability Testing, Online Proceedings (2004)Google Scholar
  18. 18.
    Wang, L., Li, Y., Wijesekera, D., Jajodia, S.: Precisely answering multi-dimensional range queries without privacy breaches. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 100–115. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Yang, X., Li, C.: Secure XML publishing without information leakage in the presence of data inference. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) Proceedings of the 30th International Conference on Very Large Data Bases, pp. 96–107. Morgan Kaufmann, San Francisco (2004)Google Scholar
  20. 20.
    Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Voronkov, A. (ed.) CADE 2002. LNCS, vol. 2392, pp. 295–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Joachim Biskup
    • 1
  • Lena Wiese
    • 1
  1. 1.Universität DortmundDortmundGermany

Personalised recommendations