Quadric Surface Extraction by Variational Shape Approximation

  • Dong-Ming Yan
  • Yang Liu
  • Wenping Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)

Abstract

Based on Lloyd iteration, we present a variational method for extracting general quadric surfaces from a 3D mesh surface. This work extends the previous variational methods that extract only planes or special types of quadrics, i.e., spheres and circular cylinders. Instead of using the exact L2 error metric, we use a new approximate L2 error metric to make our method more efficient for computing with general quadrics. Furthermore, a method based on graph cut is proposed to smooth irregular boundary curves between segmented regions, which greatly improves the final results.

Keywords

variational surface approximation quadric surface fitting graph cut segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Transactions on Graphics 23(3), 905–914 (2004)CrossRefGoogle Scholar
  2. 2.
    Wu, J.H., Kobbelt, L.: Structure recovery via hybrid variational surface approximation. Computer Graphics Forum 24(3), 277–284 (2005)CrossRefGoogle Scholar
  3. 3.
    Lloyd, S.: Least square quantization in PCM. IEEE Trans. Inform Theory 28, 129–137 (1982)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Simari, P.D., Singh, K.: Extraction and remeshing of ellipsoidal representations from mesh data. In: Graphics Interface, pp. 161–168 (2005)Google Scholar
  5. 5.
    Julius, D., Kraevoy, V., Sheffer, A.: D-charts: Quasi-developable mesh segmentation. Computer Graphics Forum 24(3), 981–990 (2005)CrossRefGoogle Scholar
  6. 6.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics 22(3), 954–961 (2003)CrossRefGoogle Scholar
  7. 7.
    Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. The Visual Computer 22(3), 181–193 (2006)CrossRefGoogle Scholar
  8. 8.
    Besl, P.J., Jain, R.C.: Segmentation through variable-order surface fitting. IEEE Trans. on Pattern Analysis and Machine Intelligence 10(2), 167–192 (1988)CrossRefGoogle Scholar
  9. 9.
    Fitzgibbon, A.F., Eggert, D.W., Fisher, R.B.: High-level CAD model acquisition from range images. Computer-Aided Design 29(4), 321–330 (1997)CrossRefGoogle Scholar
  10. 10.
    Mangan, A.P., Whitaker, R.T.: Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. on Visualization and Computer Graphics 5(4), 308–321 (1999)CrossRefGoogle Scholar
  11. 11.
    Sander, P.V., Wood, Z.J., Gortler, S.J., Snyder, J., Hoppe, H.: Multi-chart geometry images. In: Proceedings of Eurographics Symposium on Geometry 2003, pp. 146–155 (2003)Google Scholar
  12. 12.
    Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.-P.: Mesh scissoring with minima rule and part salience. Computer Aided Geometric Design 22(5), 444–465 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Marinov, M., Kobbelt, L.: Automatic generation of structure preserving multiresolution models. Computer Graphics Forum 24(3), 479–486 (2005)CrossRefGoogle Scholar
  14. 14.
    Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Proceedings of Pacific Graphics 2004, pp. 298–305 (2004)Google Scholar
  15. 15.
    Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. The Visual Computer 21(8-10), 649–658 (2005)CrossRefGoogle Scholar
  16. 16.
    Lavoué, G., Dupont, F., Baskurt, A.: A new CAD mesh segmentation method, based on curvature tensor analysis. Computer-Aided Design 37(10), 975–987 (2005)CrossRefGoogle Scholar
  17. 17.
    Shamir, A.: A formulation of boundary mesh segmentation. In: Proceedings of the second International Symposium on 3DPVT, pp. 82–89 (2004)Google Scholar
  18. 18.
    Taubin, G.: An improved algorithm for algebraic curve and surface fitting. In: International Conference on Computer Vision, pp. 658–665 (1993)Google Scholar
  19. 19.
    Ahn, S.J., Rauh, W., Cho, H.S., Warnecke, H.J.: Orthogonal distance fitting of implicit curves and surfaces. IEEE Tran. on Pattern Analysis and Machine Intelligence 24(5), 620–638 (2002)CrossRefGoogle Scholar
  20. 20.
    Taubin, G.: Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 13, 1115–1138 (1991)CrossRefGoogle Scholar
  21. 21.
    Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM Transaction on Graphics 23(3), 303–308 (2004)CrossRefGoogle Scholar
  22. 22.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Tran. on Pattern Analysis and Machine Interlligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  23. 23.
    Liu, Y., Pottmann, H., Wang, W.: Constrained 3D shape reconstruction using a combination of surface fitting and registration. Computer-Aided Design (to appear, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dong-Ming Yan
    • 1
  • Yang Liu
    • 1
  • Wenping Wang
    • 1
  1. 1.The University of Hong KongHong KongChina

Personalised recommendations