Verification of Engineering Models Based on Bipartite Graph Matching for Inspection Applications

  • F. Fishkel
  • A. Fischer
  • S. Ar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)


Engineering Inspection (EI) requires automated verification of freeform parts. Currently, parts are verified by using alignment techniques on the inspected part and a CAD model. Applying the alignment on points or meshes is demanding and time-consuming. This work proposes a new alignment method to be applied on segments rather than on mesh elements. First, a discrete curvature analysis is applied on the meshes, and segments are extracted. Then, the inspected and CAD models are represented by segment graphs. Finally, a bipartite graph matching process is applied on the segment graphs, which are combined to be the two sides of a bipartite graph. As a result, a Combinatorial Matching Tree (CMT) is defined, and potential alignments are determined. The feasibility of the proposed segments alignment is demonstrated on real scanned engineering parts.


Computational metrology Mesh processing Metrology Reverse engineering Bipartite graph matching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amenta, N., Bern, M., Kamvysselis, M.: A New Voronoi-Based Surface Reconstruction Algorithm. Siggraph, 415–421 (1998)Google Scholar
  2. 2.
    Barhak, J.: Utilizing Computing Power to Simplify the Inspection Process of Complex Shapes. In: Israel-Italy Bi-National Conference, Tel Aviv, Israel (2004)Google Scholar
  3. 3.
    Bengoetxea, E.: Inexact Graph Matching Using Estimation of Distribution Algorithms. Thèse de Doctorat Spécialité Signal et Images, Ecole Nationale Supérieure des Télécommunications, Paris, France (2002)Google Scholar
  4. 4.
    Bergevin, R., Laurendeau, D., Poussart, D.: Registering Range Views of Multipart Objects. Computer Vision and Image Understanding 61(1), 1–16 (1995)CrossRefGoogle Scholar
  5. 5.
    Besl, P.J., McKay, N.D.: A Method for Registration of 3D Shapes. IEEE Transactions on pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  6. 6.
    Bunke, H.: Graph Matching: Theoretical Foundations, Algorithms, and Applications. In: International Conference on Vision Interface, pp. 82–88 (2000)Google Scholar
  7. 7.
    Eshera, M.A., Fu, K.S.: A Graph Distance Measure for Image Analysis. IEEE Trans. SMC 14, 398–408 (1984)zbMATHGoogle Scholar
  8. 8.
    Gopi, M., Krishnan, S.: Fast and Efficient Projection Based Approach for Surface Reconstruction. In: 15th Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI (2002)Google Scholar
  9. 9.
    Higuchi, K., Delingette, H., Hebert, M., Ikeuchi, K.: Merging Multiple Views Using a Spherical Representation. In: Proc. IEEE 2nd CAD-Based Vision Workshop, Champion, PA, pp. 124–131 (1994)Google Scholar
  10. 10.
    Hugli, H., Schutz, C.: Geometric Matching of 3D Objects: Assessing the Range of Successful Initial Configurations. 3-D Digital Imaging and Modeling (1997)Google Scholar
  11. 11.
    Johnson, A., Hebert, M.: Surface Registration by Matching Oriented Points. In: Proc. Int. Conf. on Recent Adv. in 3-D Digital Imaging and Modeling, pp. 121–128 (1997)Google Scholar
  12. 12.
    Katz, S., Tal, A.: Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts. In: SIGGRAPH, ACM Transactions on Graphics, vol. 22, pp. 954–961 (2003)Google Scholar
  13. 13.
    Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Reading (2006)Google Scholar
  14. 14.
    Lavoué, G., Dupont, F., Baskurt, A.: Constant Curvature Region Decomposition of 3D-Meshes by a Mixed Approach Vertex-Triangle. Journal of WSCG 12(1-3) (2004); ISSN 1213-, Plzen, Czech RepublicGoogle Scholar
  15. 15.
    Levi, G.: A Note on the Derivation of Maximal Common Subgraphs of Two Directed or Undirected Graphs. Calcolo 9, 341–354 (1972)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Lipschitz, B.: Discrete Curvature Estimation of Scanned Noisy Objects for Verification of Scanned Engineering Parts with CAD Models. Technion – Israel Institute of Technology, Research Thesis (2002)Google Scholar
  17. 17.
    Liu, R., Hirzinger, G.: Marker-free Automatic Matching of Range Data. In: Reulke, R., Knauer, U. (eds.) Panoramic Photogrammetry Workshop, Proceedings of the ISPRS working group V/5, Berlin (2005)Google Scholar
  18. 18.
    Mangan, A., Whitaker, R.: Partitioning 3D Surface Meshes using Watershed Segmentation. IEEE Transactions on Visualization and Computer Graphics 5(4), 308–321 (1999)CrossRefGoogle Scholar
  19. 19.
    McGregor, J.: Backtrack Search Algorithms and the Maximal Common Subgraph Problem. Software-Practice and Experience 12, 23–34 (1982)zbMATHCrossRefGoogle Scholar
  20. 20.
    Sanfeliu, A., Fu, K.S.: A Distance Measure Between Attributed Relational Graphs for PatternRecognition. IEEE Trans. SMC 13, 353–363 (1983)zbMATHGoogle Scholar
  21. 21.
    Spanjaard, S., Vergeest, J.S.M.: Comparing Different Fitting Strategies for Matching Two 3D Point Sets using a Multivariable Minimizer. In: Proceedings of Computers and Information in Engineering Conference, DETC 2001/CIE-21242, Pittsburgh, USA, ASME, New York (2001)Google Scholar
  22. 22.
    Srinivasan, V.: Elements of Computational Metrology. In: Proceedings of the DIMACS Workshop on Computer-Aided Design and Manufacturing. American Mathematical Society (2005)Google Scholar
  23. 23.
    Taubin, G.: Estimating the Tensor of Curvature of a Surface from a Polyhedral Approximation. In: Proc. of fifth international conference on computer vision, pp. 902–907 (1995)Google Scholar
  24. 24.
    Turk, G., Levoy, M.: Zippered Polygon Meshes from Range Images. In: Computer Graphics Proceedings, Annual Conference Series, Siggraph, pp. 311–318 (1994)Google Scholar
  25. 25.
    Ullman, J.R.: An Algorithm for Subgraph Isomorphism. Journal of the Association for Computing Machinery 23(1), 31–42 (1976)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Várady, T., Martin, R.R., Cox, J.: Reverse Engineering of Geometric Models. An Introduction. Computer-Aided Design 29(4), 255–268 (1997)CrossRefGoogle Scholar
  27. 27.
    Zhang, Y., Paik, J., Koschan, A., Abidi, M.A.: A Simple and Efficient Algorithm for Part Decomposition of 3D Triangulated Models Based on Curvature Analysis. In: Proc. Int. Conf. Image Processing, Rochester, NY, vol. III, pp. 273–276 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • F. Fishkel
    • 1
  • A. Fischer
    • 1
  • S. Ar
    • 1
  1. 1.Laboratory for CAD & Life Cycle Engineering, Faculty of Mechanical Engineering, TechnionIsrael Institute of TechnologyHaifaIsrael

Personalised recommendations