Constructing Regularity Feature Trees for Solid Models

  • M. Li
  • F. C. Langbein
  • R. R. Martin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4077)


Approximate geometric models, e.g. as created by reverse engineering, describe the approximate shape of an object, but do not record the underlying design intent. Automatically inferring geometric aspects of the design intent, represented by feature trees and geometric constraints, enhances the utility of such models for downstream tasks. One approach to design intent detection in such models is to decompose them into regularity features. Geometric regularities such as symmetries may then be sought in each regularity feature, and subsequently be combined into a global, consistent description of the model’s geometric design intent. This paper describes a systematic approach for finding such regularity features based on recovering broken symmetries in the model. The output is a tree of regularity features for subsequent use in regularity detection and selection. Experimental results are given to demonstrate the operation and efficiency of the algorithm.


Reverse Engineering Break Symmetry Feature Recognition External Line Boundary Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagali, S., Waggenspack, J.: A shortest path approach to wireframe to solid model conversion. In: Proc. 3rd ACM Symp. Solid Modeling and Appl., pp. 339–349 (1995)Google Scholar
  2. 2.
    Dong, X., Wozny, M.: A method for generating volumetric features from surface features. In: Proc. 1st ACM Symp. Solid Modeling and Appl., pp. 185–194 (1991)Google Scholar
  3. 3.
    Gao, C.H., Langbein, F.C., Marshall, A.D., Martin, R.R.: Local topological beautification of reverse engineered models. Computer-Aided Desisn 36(13), 1337–1355 (2004)CrossRefGoogle Scholar
  4. 4.
    Han, J., Pratt, M., Regli, W.: Manufacturing feature recognition from solid models: a status report. IEEE Trans. Robotics and Automation 6(6), 782–796 (2000)CrossRefGoogle Scholar
  5. 5.
    Inoue, K., Shimada, K., Chilaka, K.: Solid model reconstruction of wireframe CAD models based on topological embeddings of planar graphs. J. Mechanical Design 125(3), 434–442 (2003)CrossRefGoogle Scholar
  6. 6.
    Kim, Y.: Convex decomposition and solid geometric modeling. PhD thesis, Starnford University, USA (1990)Google Scholar
  7. 7.
    Langbein, F.C., Mills, B.I., Marshall, A.D., Martin, R.R.: Approximate geometric regularities. Int. J. Shape Modeling 7(2), 129–162 (2001)CrossRefGoogle Scholar
  8. 8.
    Langbein, F.C.: Beautification of reverse engineered geometric models. PhD thesis, Cardiff University, UK (2003)Google Scholar
  9. 9.
    Lequette, R.: Automatic construction of curvilinear solids from wireframe views. Computer-Aided Design 20(4), 171–179 (1988)zbMATHCrossRefGoogle Scholar
  10. 10.
    Leyton, M.: A Generative Theory of Shape. LNCS, vol. 2145. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  11. 11.
    Liu, S., Hu, S., Chen, Y., Sun, J.: Reconstruction of curved solids from engineering drawings. Computer-Aided Design 33(14), 1059–1072 (2001)CrossRefGoogle Scholar
  12. 12.
    Lockwood, E., Macmillan, R.: Geometric symmetry. Mathematical Intelligence 6(3), 63–67 (1984)CrossRefGoogle Scholar
  13. 13.
    Markowsky, G., Wesley, M.: Fleshing out wire frames. IBM J. Research and Development 24(5), 582–597 (1980)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mills, B., Langbein, F., Marshall, A., Martin, R.: Approximate symmetry detection for reverse engineering. In: Proc. 6th ACM Symp. Solid Modeling and Appl., pp. 241–248 (2001)Google Scholar
  15. 15.
    Mills, B., Langbein, F., Marshall, A., Martin, R.: Estimate of frequencies of geometric regularities for use in reverse engineering of simple mechanical components. Tech. report GVG 2001-1, Dept. Computer Science, Cardiff University (2001)Google Scholar
  16. 16.
    Rappoport, A.: The extended convex differences tree (ECDT) representation for n-dimensional polyhedra. Intl. J. Comp. Geometry and Appl. 1(3), 227–241 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Regli, W.: Geometric algorithms for recognition of features from solid models. PhD thesis, University of Maryland, USA (1995)Google Scholar
  18. 18.
    Sakurai, H., Dave, P.: Volume decomposition and feature recognition, Part II: curved objects. Computer-Aided Design 28(6-7), 519–537 (1996)CrossRefGoogle Scholar
  19. 19.
    Sandiford, D., Hinduja, S.: Construction of feature volumes using intersection of adjacent surfaces. Computer-Aided Design 33(6), 455–473 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sashikumar, V., Milind, S.: Reconstruction of feature volumes and feature suppression. In: Proc. 7th ACM Symp. Solid Modeling and Appl., pp. 60–71 (2002)Google Scholar
  21. 21.
    Sashikumar, V., Milind, S., Rahul, R.: Removal of blends from boundary representation models. In: Proc. 7th ACM Symp. Solid Modeling and Appl., pp. 83–94 (2002)Google Scholar
  22. 22.
    Shapiro, V., Vossler, D.: Separation for boundary to CSG conversion. ACM Trans. Graphics 12(1), 35–55 (1993)zbMATHCrossRefGoogle Scholar
  23. 23.
    Sitharam, M., Oung, J.-J., Zhou, Y., Arbree, A.: Geometric constraints within feature hierarchies. Computer-Aided Design 38(1), 22–38 (2006)CrossRefGoogle Scholar
  24. 24.
    Vandenbrande, J.: Automatic recognition of Machinable Features in Solid Models. PhD thesis, University of Rochester, USA (1990)Google Scholar
  25. 25.
    Varady, T., Martin, R., Cox, J.: Reverse engineering of geometric models - an introduction. Computer-Aided Design 29(4), 255–268 (1997)CrossRefGoogle Scholar
  26. 26.
    Waco, D., Kim, Y.: Geometric reasoning for machining features using convex decomposition. Computer-Aided Design 26(6), 477–489 (1994)zbMATHCrossRefGoogle Scholar
  27. 27.
    Woo, Y., Sakurai, H.: Recognition of maximal features by volume decomposition. Computer-Aided Design 34(3), 195–207 (2002)CrossRefGoogle Scholar
  28. 28.
    Woo, Y.: Fast cell-based decomposition and applications to solid modeling. Computer-Aided Design 35(11), 969–977 (2003)CrossRefGoogle Scholar
  29. 29.
    Xu, X., Hinduja, S.: Recognition of rough machining features in \(2\frac{1}{2}\) components. Computer-Aided Design 30(7), 503–516 (1998)zbMATHCrossRefGoogle Scholar
  30. 30.
    Zhu, H., Menq, C.: B-rep model simplification by automatic fillet/round suppressing for efficient automatic feature recognition. Computer-Aided Design 34(2), 109–123 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Li
    • 1
  • F. C. Langbein
    • 1
  • R. R. Martin
    • 1
  1. 1.School of Computer ScienceCardiff UniversityCardiffUK

Personalised recommendations