Advertisement

Reconfigurable Modular Arithmetic Logic Unit for High-Performance Public-Key Cryptosystems

  • K. Sakiyama
  • N. Mentens
  • L. Batina
  • B. Preneel
  • I. Verbauwhede
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3985)

Abstract

This paper presents a reconfigurable hardware architecture for Public-key cryptosystems. By changing the connections of coarse grain Carry-Save Adders (CSAs), the datapath provides a high performance for both RSA and Elliptic Curve Cryptography (ECC). In addition, we introduce another reconfigurability for the flip-flops in order to make the best of hardware resources. The results of FPGA implementation show that better performance is obtained for ECC on the same hardware platform.

Keywords

Public-Key Cryptography (PKC) RSA Elliptic Curve Cryptography (ECC) FPGA implementation Reconfigurable architecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batina, L., Bruin-Muurling, G., Örs, S.B.: Flexible hardware design for RSA and elliptic curve cryptosystems. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 250–263. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Batina, L., Muurling, G.: Montgomery in Practice: How to Do It More Efficiently in Hardware. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 40–52. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Crowe, F., Daly, A., Marnane, W.: A Scalable Dual Mode Arithmetic Unit for Public Key Cryptosystems. In: Proc. IEEE International Conference Conference on Information Technology - ITCC 2005, Las Vegas, pp. 568–573 (2005)Google Scholar
  4. 4.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Koblitz, N.: Elliptic curve cryptosystem. Math. Comp. 48, 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kocher, P., Jaffe, J., Jun, B.: Introduction to differential power analysis and related attacks (1998), http://www.cryptography.com/dpa/technical
  7. 7.
    McIvor, C., McLoone, M., McCanny, J., Daly, A., Marnane, W.: Fast Montgomery Modular Multiplication and RSA Cryptographic Processor Architectures. In: Proceedings of 37th Annual Asilomar Conference on Signals, Systems and Computers, pp. 379–384 (November 2003)Google Scholar
  8. 8.
    Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Miller, V.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  10. 10.
    Quisquater, J.-J., Couvreur, C.: Fast decipherment algorithm for RSA public-key cryptosystem. Electronics Letters 18, 905–907 (1982)CrossRefGoogle Scholar
  11. 11.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tenca, A.F., Koç, Ç.K.: A scalable architecture for Montgomery multiplication. In: Koç, Ç.K., Paar, C. (eds.) Proceedings of 1st International Workshop on Cryptographic Hardware and Embedded Systems (CHES), Worcester, Massachusetts, USA. LNCS, vol. 1717, pp. 94–108. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • K. Sakiyama
    • 1
  • N. Mentens
    • 1
  • L. Batina
    • 1
  • B. Preneel
    • 1
  • I. Verbauwhede
    • 1
  1. 1.Katholieke Universiteit LeuvenESAT/COSICLeuven-HeverleeBelgium

Personalised recommendations