Anonymous Distribution of Encryption Keys in Cellular Broadcast Systems

  • Jacek Cichoń
  • Łukasz Krzywiecki
  • Mirosław Kutyłowski
  • Paweł Wlaź
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4074)


We consider distribution of encryption keys for “pay-per-view” broadcasting systems with a dynamic set of users. We assume that the active recipients in such a system (i.e. those who pay for the current transmission) obtain a key necessary for decoding the transmission. If the set of recipients changes, the system has to update the key and inform the legitimate users about the change.

Communication medium we consider here is an ad hoc network of users organized in the same way as GSM or UMTS: the service area is divided into cells, each cell serves a limited number of users. Communication with the users in a cell is through a shared communication channel of this cell.

We present a procedure for distributing a new key to a new set of active users. We pursue three goals: communication volume related to a change of the encryption key should be kept as small as possible, the energy cost for each legitimate user should be low, the update process should not reveal any information about users behavior.

Our scheme is based on balanced allocation algorithms. It is simple, easy to implement, preserves anonymity. It has small communication overhead and low energy cost for the users. It works very well for a practical parameter size.


Data broadcast anonymity balanced allocation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anzai, J., Matsuzaki, N., Matsumoto, T.: A Quick Group Key Distribution Scheme with “Entity Revocation”. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 333–347. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced Allocations. SIAM J. Comput. 29(1), 180–200 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced Allocations: The Heavily Loaded Case. In: 32nd ACM-STOC, Portland, pp. 745–754 (2000)Google Scholar
  4. 4.
    Cole, R., Frieze, A., Maggs, B.M., Mitzenmacher, M., Richa, A.W., Sitaraman, R.K., Upfal, E.: On Balls and Bins with Deletions. In: Rolim, J.D.P., Serna, M.J., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 145–158. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Kim, C.H., Hwang, Y.H., Lee, P.J.: Practical Pay-TV Scheme using Traitor Tracing Scheme for Multiple Channels. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 264–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Kumar, R., Rajagopalan, S., Sahai, A.: Coding Constructions for Blacklisting Problems without Computational Assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Matsuzaki, N., Anzai, J., Matsumoto, T.: Light Weight Broadcast Exclusion using Secret Sharing. In: Clark, A., Boyd, C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 313–327. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Mitzenmacher, M., Prabhakar, B., Shah, D.: Load Balancing with Memory. In: 43rd IEEE FOCS, pp. 799–808 (2002)Google Scholar
  12. 12.
    Nakano, K., Olariu, S.: Randomized Initialization Protocols for Radio Networks. In: ch.9 [15]Google Scholar
  13. 13.
    Raab, M., Steger, A.: "Balls into bins" - A simple and tight analysis. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Snoeyink, J., Suri, S., Varghese, G.: A Lower Bound for Multicast Key Distribution. In: Proc. of IEEE INFOCOM 2001, Anchorage, pp. 422–431 (2001)Google Scholar
  15. 15.
    Stojmenović, I. (ed.): Handbook of Wireless Networks and Mobile Computing. Wiley, Chichester (2002)Google Scholar
  16. 16.
    Vöcking, B.: How Asymmetry Helps Load Balancing. In: 40th IEEE-FOCS, pp. 131–140 (1999)Google Scholar
  17. 17.
    Vöcking, B.: Symmetric vs. Asymmetric Multiple-Choice Algorithms. In: Proc. 2nd ARACNE Workshop, Aarhus, pp. 7–15 (2001)Google Scholar
  18. 18.
    Wallner, D., Harder, E., Agee, R.: Key Management for Multicast: Issues and Architectures. RFC 2627 (June 1999)Google Scholar
  19. 19.
    Watanabe, Y., Numao, M.: Multi-round Secure Light-Weight Broadcast Exclusion Protocol with Pre-processing. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 85–99. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Wong, C.K., Goudaand, M., Lam, S.: Secure Group Communications Using Key Graphs. In: ACM SIGCOMM 1998, pp. 68–79 (1998)Google Scholar
  21. 21.
    Xu, J., Lee, D.-L., Hu, Q., Lee, W.-C.: Data Broadcast. In: ch. 10 in [15]Google Scholar
  22. 22.
    Zhang, X.B., Lam, S.S., Lee, D.-Y.: Group Rekeying with Limited Unicast Recovery. Computer Networks 44(6), 855–870 (2004)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jacek Cichoń
    • 1
  • Łukasz Krzywiecki
    • 1
  • Mirosław Kutyłowski
    • 1
  • Paweł Wlaź
    • 2
  1. 1.Institute of Mathematics and Computer ScienceWrocław University of Technology 
  2. 2.Technical University Lublin 

Personalised recommendations