Advertisement

A Declarative Framework for Security: Secure Concurrent Constraint Programming

  • Hugo A. López
  • Catuscia Palamidessi
  • Jorge A. Pérez
  • Camilo Rueda
  • Frank D. Valencia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4079)

Abstract

Due to technological advances such as the Internet and mobile computing, Security has become a serious challenge involving several disciplines of Computer Science. In recent years, there has been a growing interest in the analysis of security protocols and one promising approach is the development of formalisms that model communicating processes, in particular Process Calculi. The results are so far encouraging although most remains to be done.

Keywords

Security Protocol Symbolic Execution Process Calculus Concurrent Constraint Computer Security Foundation Workshop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [ALV03]
    Amadio, R., Lugiez, D., Vanackere, V.: On the symbolic reduction of processes with cryptographic functions. TCS: Theoretical Computer Science 290 (2003)Google Scholar
  2. [BB02]
    Boreale, M., Buscemi, M.G.: A Framework for the Analysis of Security Protocols. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, p. 483. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. [CW01]
    Crazzolara, F., Winskel, G.: Events in security protocols. In: Samarati, P. (ed.) Proceedings of the 8th ACM Conference on Computer and Communications Security, Philadelphia, PA, USA, pp. 96–105. ACM Press, New York (2001)CrossRefGoogle Scholar
  4. [FA01]
    Fiore, M., Abadi, M.: Computing symbolic models for verifying cryptographic protocols. In: 14th IEEE Computer Security Foundations Workshop, pp. 160–173. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  5. [NPV02]
    Nielsen, M., Palamidessi, C., Valencia, F.: Temporal concurrent constraint programming: Denotation, logic and applications. Nordic Journal of Computing 9(2), 145–188 (2002)zbMATHMathSciNetGoogle Scholar
  6. [Pit01]
    Pitts, A.M.: Nominal Logic: A First Order Theory of Names and Binding. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, p. 219. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. [PSVV06]
    Palamidessi, C., Saraswat, V., Victor, B., Valencia, F.: On the expressiveness of recursion vs replication in the asynchronous pi-calculus. In: LICS 2006 (to appear, 2006)Google Scholar
  8. [RM94]
    Rossi, F., Montanari, U.: Concurrent semantics for concurrent constraint programming. In: Constraint Programming: Proc. 1993 NATO ASI, pp. 181–220 (1994)Google Scholar
  9. [Sar93]
    Saraswat, V.: Concurrent Constraint Programming. The MIT Press, Cambridge (1993)Google Scholar
  10. [Smo95]
    Smolka, G.: The Oz programming model. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 324–343. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. [SRP91]
    Saraswat, V., Rinard, M., Panangaden, P.: The semantic foundations of concurrent constraint programming. In: POPL 1991, pp. 333–352 (1991)Google Scholar
  12. [Val05]
    Valencia, F.: Decidability of infinite-state timed CCP processes and first-order LTL. Theor. Comput. Sci. 330(3), 577–607 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hugo A. López
    • 1
  • Catuscia Palamidessi
    • 2
  • Jorge A. Pérez
    • 1
  • Camilo Rueda
    • 1
  • Frank D. Valencia
    • 3
  1. 1.Pontificia Universidad Javeriana – Cali 
  2. 2.INRIA and LIX École Polytechnique 
  3. 3.CNRS and LIX École Polytechnique 

Personalised recommendations