On Characterising and Identifying Mismatches in Scientific Workflows

  • Khalid Belhajjame
  • Suzanne M. Embury
  • Norman W. Paton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4075)


Workflows are gaining importance as a means for modelling and enacting in silico scientific experiments. A major issue which arises when aggregating a collection of analysis operations within a workflow is the compatibility of their inputs and outputs: the analysis operations are supplied by independently developed web services which are likely to have incompatible inputs and outputs. We use the term mismatch to refer to such incompatibility. This paper characterises the mismatches a scientific workflow may suffer from and specifies mappings for their resolution.


Data Link Analysis Operation Connected Parameter Type Mismatch Representation Mismatch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belhajjame, K., Embury, S.M., Fan, H., Goble, C.A., Hermjakob, H., Hubbard, S.J., Jones, D., Jones, P., Martin, N., Oliver, S., Orengo, C., Paton, N.W., Poulovassilis, A., Siepen, J., Stevens, R., Taylor, C., Vinod, N., Zamboulis, L., Zhu, W.: Proteome data integration: Characteristics and challenges. In: UK All Hands Meeting (2005)Google Scholar
  2. 2.
    Bowers, S., Ludäscher, B.: An ontology-driven framework for data transformation in scientific workflows. In: Rahm, E. (ed.) DILS 2004. LNCS (LNBI), vol. 2994, pp. 1–16. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bowers, S., Ludäscher, B.: Actor-oriented design of scientific workflows. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 369–384. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Gruber, T.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  5. 5.
    Hull, D., Stevens, R., Lord, P., Wroe, C., Goble, C.: Treating shimantic web syndrome with ontologies. In: First Advanced Knowledge Technologies workshop on Semantic Web Services (AKT-SWS 2004) (2004)Google Scholar
  6. 6.
    Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services selection. IEEE Internet Computing 8(5), 84–93 (2004)CrossRefGoogle Scholar
  7. 7.
    Oinn, T.M., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, R.M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)CrossRefGoogle Scholar
  8. 8.
    Taylor, I.J., Shields, M.S., Wang, I., Rana, O.F.: Triana applications within grid computing and peer to peer environments. J. Grid Comput. 1(2), 199–217 (2003)CrossRefGoogle Scholar
  9. 9.
    Wroe, C., Stevens, R., Goble, C.A., Roberts, A., Greenwood, R.M.: A suite of daml+oil ontologies to describe bioinformatics web services and data. Int. J. Cooperative Inf. Syst. 12(2), 197–224 (2003)CrossRefGoogle Scholar
  10. 10.
    Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. SIGMOD Record 34(3), 44–49 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Khalid Belhajjame
    • 1
  • Suzanne M. Embury
    • 1
  • Norman W. Paton
    • 1
  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations