Advertisement

Some Plausible Constructions of Double-Block-Length Hash Functions

  • Shoichi Hirose
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4047)

Abstract

In this article, it is discussed how to construct a compression function with 2 n-bit output using a component function with n-bit output. The component function is either a smaller compression function or a block cipher. Some constructions are presented which compose collision-resistant hash functions: Any collision-finding attack on them is at most as efficient as the birthday attack in the random oracle model or in the ideal cipher model. A new security notion is also introduced, which we call indistinguishability in the iteration, with a construction satisfying the notion.

Keywords

Hash Function Block Cipher Random Oracle Compression Function Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Black, J.: The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash function. Cryptology ePrint Archive, Report 2005/210 (2005), http://eprint.iacr.org/, (Also appear in this proceedings)
  2. 2.
    Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly efficient blockcipher-based hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 526–541. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipherbased hash-function onstructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Brachtl, B.O., Coppersmith, D., Hyden, M.M., Matyas Jr., S.M., Meyer, C.H.W., Oseas, J., Pilpel, S., Schilling, M.: Data authentication using modification detection codes based on a public one-way encryption function, U. S. Patent # 4,908,861 (march 1990)Google Scholar
  5. 5.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Damgård, I.: Collision free hash functions and public key signature schemes. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216. Springer, Heidelberg (1988)Google Scholar
  7. 7.
    Gauravaram, P., Millan, W., May, L.: CRUSH: A new cryptographic hash function using iterated halving technique. In: Proceedings of Cryptographic Algorithms and their Uses 2004, pp. 28–39 (2004)Google Scholar
  8. 8.
    Hattori, M., Hirose, S., Yoshida, S.: Analysis of double block length hash functions. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 290–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Hirose, S.: Secure block ciphers are not sufficient for one-way hash functions in the Preneel-Govaerts-Vandewalle model. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 339–352. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Hirose, S.: Provably secure double-block-length hash functions in a black-box model. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Hohl, W., Lai, X., Meier, T., Waldvogel, C.: Security of iterated hash functions based on block ciphers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 379–390. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Knudsen, L., Muller, F.: Some attacks against a double length hash proposal. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 462–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Knudsen, L., Preneel, B.: Hash functions based on block ciphers and quaternary codes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 77–90. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Knudsen, L., Preneel, B.: Fast and secure hashing based on codes. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 485–498. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Knudsen, L., Preneel, B.: Construction of secure and fast hash functions using nonbinary error-correcting codes. IEEE Transactions on Information Theory 48(9), 2524–2539 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Knudsen, L.R., Lai, X., Preneel, B.: Attacks on fast doble block length hash functions. Journal of Cryptology 11(1), 59–72 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lai, X., Massey, J.L.: Hash function based on block ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  20. 20.
    Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  21. 21.
    Nandi, M.: Design of Iteration on Hash Functions and Its Cryptanalysis. PhD thesis, Indian Statistical Institute (2005)Google Scholar
  22. 22.
    Nandi, M.: Towards optimal double-length hash functions. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 77–89. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Nandi, M., Lee, W., Sakurai, K., Lee, S.: Security analysis of a 2/3-rate double length compression function in the black-box model. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 243–254. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Pramstaller, N., Rijmen, V.: A collision attack on a double-block-length hash proposal. Cryptology ePrint Archive, Report 2006/116 (2006), http://eprint.iacr.org/
  25. 25.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  26. 26.
    Satoh, T., Haga, M., Kurosawa, K.: Towards secure and fast hash functions. IEICE Transactions on Fundamentals E82-A(1), 55–62 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shoichi Hirose
    • 1
  1. 1.Faculty of EngineeringThe University of FukuiFukuiJapan

Personalised recommendations