Some Plausible Constructions of Double-Block-Length Hash Functions

  • Shoichi Hirose
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4047)

Abstract

In this article, it is discussed how to construct a compression function with 2 n-bit output using a component function with n-bit output. The component function is either a smaller compression function or a block cipher. Some constructions are presented which compose collision-resistant hash functions: Any collision-finding attack on them is at most as efficient as the birthday attack in the random oracle model or in the ideal cipher model. A new security notion is also introduced, which we call indistinguishability in the iteration, with a construction satisfying the notion.

References

  1. 1.
    Black, J.: The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash function. Cryptology ePrint Archive, Report 2005/210 (2005), http://eprint.iacr.org/, (Also appear in this proceedings)
  2. 2.
    Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly efficient blockcipher-based hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 526–541. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipherbased hash-function onstructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Brachtl, B.O., Coppersmith, D., Hyden, M.M., Matyas Jr., S.M., Meyer, C.H.W., Oseas, J., Pilpel, S., Schilling, M.: Data authentication using modification detection codes based on a public one-way encryption function, U. S. Patent # 4,908,861 (march 1990)Google Scholar
  5. 5.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Damgård, I.: Collision free hash functions and public key signature schemes. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216. Springer, Heidelberg (1988)Google Scholar
  7. 7.
    Gauravaram, P., Millan, W., May, L.: CRUSH: A new cryptographic hash function using iterated halving technique. In: Proceedings of Cryptographic Algorithms and their Uses 2004, pp. 28–39 (2004)Google Scholar
  8. 8.
    Hattori, M., Hirose, S., Yoshida, S.: Analysis of double block length hash functions. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 290–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Hirose, S.: Secure block ciphers are not sufficient for one-way hash functions in the Preneel-Govaerts-Vandewalle model. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 339–352. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Hirose, S.: Provably secure double-block-length hash functions in a black-box model. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Hohl, W., Lai, X., Meier, T., Waldvogel, C.: Security of iterated hash functions based on block ciphers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 379–390. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Knudsen, L., Muller, F.: Some attacks against a double length hash proposal. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 462–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Knudsen, L., Preneel, B.: Hash functions based on block ciphers and quaternary codes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 77–90. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Knudsen, L., Preneel, B.: Fast and secure hashing based on codes. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 485–498. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Knudsen, L., Preneel, B.: Construction of secure and fast hash functions using nonbinary error-correcting codes. IEEE Transactions on Information Theory 48(9), 2524–2539 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Knudsen, L.R., Lai, X., Preneel, B.: Attacks on fast doble block length hash functions. Journal of Cryptology 11(1), 59–72 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lai, X., Massey, J.L.: Hash function based on block ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  20. 20.
    Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  21. 21.
    Nandi, M.: Design of Iteration on Hash Functions and Its Cryptanalysis. PhD thesis, Indian Statistical Institute (2005)Google Scholar
  22. 22.
    Nandi, M.: Towards optimal double-length hash functions. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 77–89. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Nandi, M., Lee, W., Sakurai, K., Lee, S.: Security analysis of a 2/3-rate double length compression function in the black-box model. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 243–254. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Pramstaller, N., Rijmen, V.: A collision attack on a double-block-length hash proposal. Cryptology ePrint Archive, Report 2006/116 (2006), http://eprint.iacr.org/
  25. 25.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  26. 26.
    Satoh, T., Haga, M., Kurosawa, K.: Towards secure and fast hash functions. IEICE Transactions on Fundamentals E82-A(1), 55–62 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shoichi Hirose
    • 1
  1. 1.Faculty of EngineeringThe University of FukuiFukuiJapan

Personalised recommendations