Randomized Wait-Free Consensus Using an Atomicity Assumption

  • Ling Cheung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3974)


We present a randomized algorithm for asynchronous wait-free consensus using multi-writer multi-reader shared registers. This algorithm is based on earlier work by Chor, Israeli and Li (CIL) and is correct under the assumption that processes can perform a random choice and a write operation in one atomic step. The expected total work for our algorithm is shown to be O(N log(logN)), compared with O(N 2) for the CIL algorithm, and O(N logN) for the best known weak adversary algorithm. We also model check instances of our algorithm using the probabilistic model checking tool PRISM.


Asynchronous Consensus Randomized Algorithms Wait-Free Termination Weak Adversary Probabilistic Model Checking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACT00]
    Aguilera, M.K., Chen, W., Toueg, S.: Failure detection and consensus in the crach recovery model. Distributed Computing 13(2), 99–125 (2000)CrossRefGoogle Scholar
  2. [AH90]
    Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal of Algorithms 11(3), 441–461 (1990)MathSciNetCrossRefMATHGoogle Scholar
  3. [AKL99]
    Aumann, Y., Kapah-Levy, A.: Cooperative sharing and asynchronous consensus using single-read single-writer registers. In: Proceedings of the 10th ACM-SIAM Anuual Symposium on Discrete Algorithms (SODA), pp. 61–70 (1999)Google Scholar
  4. [Asp98]
    Aspnes, J.: Lower bounds for distributed coin-flipping and randomized consensus. Journal of the ACM 45(3), 415–450 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. [Asp03]
    Aspnes, J.: Randomized protocols for asynchronous consensus. Distributed Computing 16(2-3), 165–175 (2003)CrossRefGoogle Scholar
  6. [Aum97]
    Aumann, Y.: Efficient asynchronous consensus with the weak adversary scheduler. In: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 209–218 (1997)Google Scholar
  7. [AW96]
    Aspnes, J., Waarts, O.: Randomized consensus in expected O(n log2 n) operations per process. SIAM Journal on Computing 25(5), 1024–1044 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. [BK98]
    Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time logic with fairness. Distributed Computing 11(3), 125–155 (1998)CrossRefGoogle Scholar
  9. [BO83]
    Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement protocols. In: Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing, pp. 27–30 (1983)Google Scholar
  10. [BPSV00]
    Buhrman, H., Panconesi, A., Silvestri, R., Vitányi, P.M.B.: On the importance of having an identity or is consensus really universal? In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 134–148. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. [BR91]
    Bracha, G., Rachman, O.: Randomized consensus in expected O(n 2 logn) operations. In: Toueg, S., Kirousis, L.M., Spirakis, P.G. (eds.) WDAG 1991. LNCS, vol. 579, pp. 143–150. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  12. [CH05]
    Cheung, L., Hendriks, M.: Causal dependencies in parallel composition of stochastic processes. Technical Report ICIS-R05020, Institute for Computing and Information Sciences, University of Nijmegen (2005)Google Scholar
  13. [Cha96]
    Chandra, T.D.: Polylog randomized wait-free consensus. In: Proceedings of the 15th Annual ACM Symposium on Principles of Distributed Computing, pp. 166–175 (1996)Google Scholar
  14. [Che05a]
    Cheung, L.: Collection of PRISM models of the modified CIL algorithm (2005), available at http://www.niii.ru.nl/~lcheung/mcil/
  15. [Che05b]
    Cheung, L.: Randomized wait-free consensus using an atomicity assumption. Technical Report ICIS-R05035, Institute for Computing and Information Sciences, University of Nijmegen (2005), available at http://www.niii.ru.nl/~lcheung/cilTR.pdf
  16. [CIL87]
    Chor, B., Israeli, A., Li, M.: On processor coordination using asynchronous hardware. In: Proceedings PODC 1987, pp. 86–97 (1987)Google Scholar
  17. [CIL94]
    Chor, B., Israeli, A., Li, M.: Wait-free consensus using asynchronous hardware. SIAM Journal on Computing 23(4), 701–712 (1994)MathSciNetCrossRefGoogle Scholar
  18. [DLS88]
    Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. Journal of the ACM 35(2), 288–323 (1988)MathSciNetCrossRefGoogle Scholar
  19. [FHS98]
    Fich, F., Herlihy, M., Shavit, N.: On the space complexity of randomized synchronization. Journal of the ACM 45(5), 843–862 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. [FLP85]
    Fischer, M., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(2), 374–382 (1985)MathSciNetCrossRefMATHGoogle Scholar
  21. [IS92]
    Israeli, A., Shaham, A.: Optimal multi-writer multi-reader atomic register. In: Proceedings of the 11th Annual ACM Symposium on Principles of Distributed Computing, pp. 71–82 (1992)Google Scholar
  22. [KN02]
    Kwiatkowska, M., Norman, G.: Verifying randomized Byzantine agreement. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 194–209. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. [KNS01]
    Kwiatkowska, M., Norman, G., Segala, R.: Automated verification of a randomized distributed consensus protocol using Cadence SMV and PRISM. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 194–206. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. [PRI]

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ling Cheung
    • 1
  1. 1.Department of Computer ScienceUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations