Half-Space Proximal: A New Local Test for Extracting a Bounded Dilation Spanner of a Unit Disk Graph

  • Edgar Chavez
  • Stefan Dobrev
  • Evangelos Kranakis
  • Jaroslav Opatrny
  • Ladislav Stacho
  • Héctor Tejeda
  • Jorge Urrutia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3974)

Abstract

We give a new local test, called a Half-Space Proximal or HSP test, for extracting a sparse directed or undirected subgraph of a given unit disk graph. The HSP neighbors of each vertex are unique, given a fixed underlying unit disk graph. The HSP test is a fully distributed, computationally simple algorithm that is applied independently to each vertex of a unit disk graph. The directed spanner obtained by this test is shown to be strongly connected, has out-degree at most six, its dilation is at most 2π+1, contains the minimum weight spanning tree as its subgraph and, unlike the Yao graph, it is rotation invariant. Since no coordinate assumption is needed to determine the HSP nodes, the test can be applied in any metric space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, pp. 489–498 (1995)Google Scholar
  2. 2.
    Barriere, L., Fraignaud, P., Narayanan, L., Opatrny, J.: Robust position-based routing in wireless ad hoc networks with unstable transmission ranges. In: The Proceedings of the 5th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIALM), pp. 19–27 (2001)Google Scholar
  3. 3.
    Boone, P., Chavez, E., Gleitzky, L., Kranakis, E., Opatrny, J., Salazar, G., Urrutia, J.: Morelia Test: Improving the Efficiency of the Gabriel Test and Face Routing in Ad-hoc Networks. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 23–34. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. In: The Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIALM), pp. 48–55 (1999)Google Scholar
  5. 5.
    Broch, J., Maltz, D., Johnson, D., Hu, Y.-C., Jetcheva, J.: A performance comparison of multi-hop wireless ad hoc network routing protocols. In: Mobile Computing and Networking, pp. 85–97 (1998)Google Scholar
  6. 6.
    Datta, S., Stojmenovic, I., Wu, J.: Internal node and shortcut based routing with guaranteed delivery in wireless networks. In: Proc. IEEE Int. Conf. on Distributed Computing and Systems Workshops; Cluster Computing, pp. 461–466 (2001)Google Scholar
  7. 7.
    Gabriel, K., Sokal, R.: A new statistical approach to geographic variation analysis. Systematic Zoology 18, 259–278 (1969)CrossRefGoogle Scholar
  8. 8.
    Gao, J., Guibas, L., Hershberger, J., Zhang, L., Zhu, A.: Geometric Spanner for Routing in Mobile Networks. In: Proceedings of the 2nd ACM International Symposium on Mobile Ad hoc Networking and Computing, pp. 45–55 (2001)Google Scholar
  9. 9.
    Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc. IEEE 80(9), 1502–1517 (1992)CrossRefGoogle Scholar
  10. 10.
    Keil, J.M., Gutwin, C.A.: Classes of Graphs which approximate the complete euclidean graph. Discrete Comp. Geom. 7, 13–28 (1992)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kranakis, E., Singh, H., Urrutia, J.: Compass Routing on Geometric Networks. In: Proceedings of 11th Canadian Conference on Computational Geometry, Vancouver, pp. 51–54 (August 1999)Google Scholar
  12. 12.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically Optimal Geometric Mobile Ad-Hoc Routing. In: Proc. of the 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIALM), pp. 24–33 (2002)Google Scholar
  13. 13.
    Li, X.-Y., Wan, P.-J., Wang, Y., Frieder, O.: Sparse Power Efficient Topology for Wireless Networks. In: HICSS 2002: Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS 2002), vol. 9, p. 296.2 (2002)Google Scholar
  14. 14.
    Li, X., Wang, Y.: Efficient construction of low weight bounded degree planar spanner. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Li, X.-Y., Calinescu, G., Wan, P.-J.: Localized Delaunay Triangulation with Application in Ad Hoc Wireless Networks, Distributed construction of planar spanner and routing for ad hoc wireless networks. In: IEEE INFOCOM (2002)Google Scholar
  16. 16.
    Perkins, C.E. (ed.): Ad Hoc Networking. Addison-Wesley, Reading (2001)Google Scholar
  17. 17.
    Toussaint, G.: The relative neighbourhood graph of a finite planar set. Pattern Recognition 12(4), 261–268 (1980)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yao, A.C.-C.: On constructing minimum spanning trees in k- dimensional spaces and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Edgar Chavez
    • 1
  • Stefan Dobrev
    • 2
  • Evangelos Kranakis
    • 3
  • Jaroslav Opatrny
    • 4
  • Ladislav Stacho
    • 5
  • Héctor Tejeda
    • 1
  • Jorge Urrutia
    • 6
  1. 1.Escuela de Ciencias Físico-Matemáticas de la Universidad Michoacana. Partially supported by CONACyT grant 36911-AMéxico
  2. 2.School of Information Technology and Engineering (SITE)University of OttawaOttawa, OntarioCanada
  3. 3.School of Computer ScienceCarleton University, Ottawa. Research supported in part by NSERC and MITACSCanada
  4. 4.Department of Computer ScienceConcordia University, Montréal. Research supported in part by NSERCCanada
  5. 5.Department of MathematicsSimon Fraser UniversityBurnaby, British ColumbiaCanada
  6. 6.Instituto de MatemáticasUniversidad Nacional Autónoma de México. Research partially supported by CONACYT grant no. 37540-A, and PAPIIT UNAMMexico

Personalised recommendations