Asynchronous and Fully Self-stabilizing Time-Adaptive Majority Consensus

  • Janna Burman
  • Ted Herman
  • Shay Kutten
  • Boaz Patt-Shamir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3974)


We study the scenario where a batch of transient faults hits an asynchronous distributed system by corrupting the state of some f nodes. We concentrate on the basic majority consensus problem, where nodes are required to agree on a common output value which is the input value of the majority of them. We give a fully self-stabilizing adaptive algorithm, i.e., the output value stabilizes in O(f) time at all nodes, for any unknown f. Moreover, a state stabilization occurs in time proportional to the (unknown) diameter of the network. Both upper bounds match known lower bounds to within a constant factor. Previous results (stated for a slightly less general problem called “persistent bit”) assumed the synchronous network model, and that f<n/2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afek, Y., Bremler-Barr, A.: Self-stabilizing unidirectional network algorithms by power-supply. In: The 8th SODA, pp. 111–120 (1997)Google Scholar
  2. 2.
    Afek, Y., Dolev, S.: Local stabilizer. In: Proceedings of the 5th Israel Symposium on Theory of Computing and Systems (June 1997)Google Scholar
  3. 3.
    Afek, Y., Kutten, S., Yung, M.: Memory-efficient self-stabilization on general networks. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486, pp. 15–28. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  4. 4.
    Arora, A., Zhang, H.: LSRP: Local stabilization in shortest path routing. In: IEEE-IFIP DSN (2003)Google Scholar
  5. 5.
    Arora, A., Gouda, M.G.: Distributed reset. IEEE Transactions on Computers 43, 1026–1038 (1994)CrossRefMATHGoogle Scholar
  6. 6.
    Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time optimal self-stabilizing syncronization. In: The 25th STOC, pp. 652–661 (1993)Google Scholar
  7. 7.
    Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correction. In: The 32nd FOCS, pp. 268–277 (October 1991)Google Scholar
  8. 8.
    Beauquier, J., Hérault, T.: Fault Local Stabilization: the shortest path tree. In: SRDS 2002, pp. 62–69 (2002)Google Scholar
  9. 9.
    Bertsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice-Hall, Englewood Cliffs, New Jersey (1992)MATHGoogle Scholar
  10. 10.
    Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: The 23rd PODC, pp. 150–159 (2004)Google Scholar
  11. 11.
    Bremler-Barr, A., Afek, Y., Schwarz, S.: Improved BGP Convergence via Ghost Flushing. IEEE J. on Selected Areas in Communications 22, 1933–1948 (2004)CrossRefGoogle Scholar
  12. 12.
    Burman, J., Herman, T., Kutten, S., Patt-Shamir, B.: Asynchronous and Fully Self-Stabilizing Time-Adaptive Majority Consensus (extended version),
  13. 13.
    Couvreur, J.M., Francez, N., Gouda, M.: Asynchronous unison. In: The ICDCS 1992, pp. 486–493 (1992)Google Scholar
  14. 14.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Comm. ACM 17(11), 643–644 (1974)CrossRefMATHGoogle Scholar
  15. 15.
    Dolev, S., Gouda, M., Schneider, M.: Memory requirements for silent stabilization. In: The 15th PODC, pp. 27–34 (1996)Google Scholar
  16. 16.
    Dolev, S., Herman, T.: SuperStabilizing Protocols for Dynamic Distributed Systems. Chicago Journal of Theoretical Computer Science 4, 1–40 (1997)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dolev, S., Herman, T.: Parallel composition of stabilizing algorithms. In: WSS 1999: Proc. 1999 ICDCS Workshop on Self-Stabilizing Systems, pp. 25–32 (1999)Google Scholar
  18. 18.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)MATHGoogle Scholar
  19. 19.
    Dolev, S., Israeli, A., Moran, S.: Resource bounds for self stabilizing message driven protocols. In: The 10th PODC, pp. 281–294 (1991)Google Scholar
  20. 20.
    Fischer, M., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Genolini, C., Tixeuil, S.: A lower bound on dynamic k-stabilization in asynchronous systems. In: SRDS 2002, pp. 211–221 (2002)Google Scholar
  22. 22.
    Herman, T.: Observations on time-adaptive self-stabilization. Technical Report TR 97-07Google Scholar
  23. 23.
    Herman, T.: Phase clocks for transient fault repair. IEEE Transactions on Parallel and Distributed Systems 11(10), 1048–1057 (2000)CrossRefGoogle Scholar
  24. 24.
    Ghosh, S., Gupta, A.: An exercise in fault-containment: self-stabilizing leader election. Inf. Proc. Let. 59, 281–288 (1996)MathSciNetMATHGoogle Scholar
  25. 25.
    Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-stabilizing algorithms. In: The 15th PODC (1996)Google Scholar
  26. 26.
    Ghosh, S., Gupta, A., Pemmaraju, S.V.: A fault-containing self-stabilizing algorithm for spanning trees. J. Computing and Information 2, 322–338 (1996)Google Scholar
  27. 27.
    Katz, S., Perry, K.: Self-stabilizing extensions for message-passing systems. In: The 10th PODC (1990)Google Scholar
  28. 28.
    Kutten, S., Patt-Shamir, B.: Asynchronous time-adaptive self stabilization. In: The 17th PODC, p. 319 (1998)Google Scholar
  29. 29.
    Kutten, S., Patt-Shamir, B.: Time-Adaptive self-stabilization. In: The 16th PODC, pp. 149–158 (1997)Google Scholar
  30. 30.
    Kutten, S., Peleg, D.: Fault-local distributed mending. In: The 14th PODC (1995)Google Scholar
  31. 31.
    Parlati, G., Yung, M.: Non-exploratory self-stabilization for constant-space symmetry-breaking. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 26–28. Springer, Heidelberg (1994)Google Scholar
  32. 32.
    Zhang, H., Arora, A., Liu, Z.: A Stability-Oriented Approach to Improving BGP Convergence. In: SRDS 2004, pp. 90–99 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Janna Burman
    • 1
  • Ted Herman
    • 2
  • Shay Kutten
    • 1
  • Boaz Patt-Shamir
    • 3
  1. 1.Dept. of Industrial Engineering & Management, TechnionHaifaIsrael
  2. 2.Dept. of Computer ScienceUniversity of IowaIowa CityUSA
  3. 3.Dept. of Electrical EngineeringTel-Aviv UniversityTel AvivIsrael

Personalised recommendations